
Writing a commandline tool in Fortran

Arne Babenhauserheide

April 11, 2017

When I finished my Diploma, I thought that Fortran is this horribly unreadable 70th
language. I thought it should be removed and that it only lived on due to pure inertia.
I thought that its only deeper use were to provide the libraries to make numeric Python
faster. Then I actually had to use it. In the beginning I mocked it and didn’t understand
why anyone would choose Fortran over C. What I saw was mostly Fortran 77. The first
thing I wrote was "Fortran surprises" — all the strange things you can stumble over.
But bit by bit I realized the similarities with Python. That well-written Fortran actually
did not look that different from Python — and much cleaner than C. That it gets stuff
done. This year Fortran turns 60 (heise reported in German). And I understand why it
is still used. And being an ISO standard it is likely that it will stick with us and keep
working many more decades.

Here I want to show you how to write a commandline tool in Fortran.

Contents

1 The first program: Hello world :) 1

2 Reading arguments 2

3 Adding structure with modules 3

4 Performance considerations 4

5 A full tool: base60 5

6 Conclusion 9

1 The first program: Hello world :)

Code to be executed when the program runs is enclosed in program and end program:

1

https://www.heise.de/developer/artikel/Fortran-im-Wandel-der-Zeit-3677272.html

program hello
write (*,*) "Hello World!"
write (*,*) ’Hello Single Quote!’

end program hello

Call this hello.f90 (.f is for the old Fortran 77).

The fastest free compiler is gfortran.

gfortran -std=gnu -O3 fortran-hello.f90 -o fortran-hello
./fortran-hello

Hello World!
Hello Single Quote!

That’s it. This is your first commandline tool.

2 Reading arguments

Most commandline tools accept arguments. Fortran-developers long resisted this and
preferred explicit configuration files, but with 2003 argument parsing entered the stan-
dard. The tool for this is get_command_argument.

program cli
implicit none ! no implicit declaration: all variables must be declared
character(1000) :: arg

call get_command_argument(1, arg) ! result is stored in arg, see
! https://gcc.gnu.org/onlinedocs/gfortran/GET_005fCOMMAND_005fARGUMENT.html

if (len_trim(arg) == 0) then ! no argument given
write (*,*) "Call me --world!"

else
if (trim(arg) == "--world") then

call get_command_argument(2, arg)
if (len_trim(arg) == 0) then

arg = "again!"
end if
write (*,*) "Hello ", trim(arg)
! trim reduces the fixed-size array to non-blank letters

end if
end if

end program

gfortran -std=gnu -O3 fortran-commandline.f90 -o fortran-helloworld
./fortran-helloworld

2

./fortran-helloworld --world World

./fortran-helloworld --world

Call me --world!
Hello World
Hello again!

3 Adding structure with modules

The following restructures the program into modules. If you used any OO tool, you know
what this does. use X, only : a, b, c gets a, b and c from module x.

Note that you have to declare all variables used in the function at the top of the function.

module hello
implicit none
character(100),parameter :: prefix = "Hello" ! parameters are constants
public :: parse_args, prefix

contains
function parse_args() result (res)

implicit none
character(1000) :: res

call get_command_argument(1, res)
if (trim(res) == "--world") then

call get_command_argument(2, res)
if (len_trim(res) == 0) then

res = "again!"
end if

end if
end function parse_args

end module hello

program helloworld
use hello, only : parse_args, prefix
implicit none
character(1000) :: world
world = parse_args()
write (*,*) trim(prefix), " ", trim(world)

end program helloworld

gfortran -std=gnu -O3 fortran-modules.f90 -o fortran-modules
./fortran-modules --world World

Hello World

3

You can also declare functions as pure (free from side effects). I did not yet check whether
the compiler enforces that already, but if it does not do it now, you can be sure that this
will be added. Fortran compilers are pretty good at enforcing what you tell them. Do
see the fortran surprises for a few hints on how to tell them what you want.

4 Performance considerations

Fortran is fast, really fast. But if you come from C, you need to retrain a bit: The inner
loop is the first part of the reference, while with C it is the last part.

The following tests the speed difference when looping over the outer or the inner part.
You can get a factor 3-5 difference by having the tight inner loop go over the inner part
of the multidimensional array.

Note the L1 cache comments: If you want to get really fast with any language, you
cannot ignore the capabilities of your hardware.

Also note that this code works completely naturally on multidimensional arrays.

! Thanks to http://infohost.nmt.edu/tcc/help/lang/fortran/time.html
program cheaplooptest

integer :: i,j,k,s
integer, parameter :: n=150 ! 50 breaks 32KB L1 cache, 150 breaks 256KB L2 cache
integer,dimension(n,n,n) :: x, y
real etime
real elapsed(2)
real total1, total2, total3, total4
x(:,:,:) = 1
total1 = etime(elapsed)
print *, "start time ", total1
! first index as outer loop
do s=1,n

do i=1,n
do j=1,n

y(i,j,:) = y(i,j,:) + x(i,j,:)
end do

end do
end do
total2 = etime(elapsed)
print *, "time for outer loop", total2 - total1
! first index as inner loop is much cheaper (difference depends on n)
do s=1,n

do k=1,n
do j=1,n

4

y(:,j,k) = y(:,j,k) + x(:,j,k)
end do

end do
end do
total3 = etime(elapsed)
print *, "time for inner loop", total3-total2
! plain copy is slightly slower
do s=1,n

y = y + x
end do
total4 = etime(elapsed)
print *, "time for simple loop", total4-total3

end program cheaplooptest

gfortran -std=gnu -O3 fortran-faster.f90 -o fortran-faster
./fortran-faster

start time 1.33320000E-02
time for outer loop 18.8833313
time for inner loop 0.750000000
time for simple loop 0.726667404

This now seriously looks like Python, but faster by factor 5 to 20.

Just to make it completely clear: The following is how the final test code looks (without
the additional looping which make it slow enough to time it).

program cleanloop
integer, parameter :: n=150 ! 50 breaks 32KB L1 cache, 150 breaks 256KB L2 cache
integer,dimension(n,n,n) :: x, y
x(:,:,:) = 1
y = y + x

end program cleanloop

That’s it. If you want to work with any multidimensional stuff like matrices, that’s in
most cases exactly what you want. And fast.

5 A full tool: base60

The previous tools were partial solutions. The following is a complete solution, including
numerical work (which is where Fortran really shines). And setting the numerical preci-
sion. I’m sharing it in total, so you can see everything I needed to do to get it working
well.

This implements newbase60 by tantek.

5

http://ttk.me/w/NewBase60

It could be even cleaner, if I could find a way to add complex numbers :)

module base60conv
implicit none ! if you use this here, the module must come before the program in gfortran
! constants: marked as parameter: not function parameters, but
! algorithm parameters!
character(len=61), parameter :: base60chars = "0123456789"&

//"ABCDEFGHJKLMNPQRSTUVWXYZ_abcdefghijkmnopqrstuvwxyz"
integer, parameter :: longlong = selected_int_kind(32) ! length up to 32 in base10, int(16)
integer(longlong), parameter :: sixty = 60
public :: base60chars, numtosxg, sxgtonum, longlong
private ! rest is private

contains
function numtosxg(number) result (res)

implicit none
!!! preparation
! input: ensure that this is purely used as input.
! intent is only useful for function arguments.
integer(longlong), intent(in) :: number
! work variables
integer(longlong) :: n
integer(longlong) :: remainder
! result
character(len=1000) :: res ! do not initialize variables when
! declaring them: That only initializes
! at compile time not at every function
! call and thus invites nasty errors
! which are hard to find. actual
! algorithm
if (number == 0) then

res = "0"
return

end if
! calculate the base60 string

res = "" ! I have to explicitely set res to "", otherwise it
! accumulates the prior results!
n = number ! the input argument: that should be safe to use.
! catch number = 0
do while(n > 0)

! in the first loop, remainder is initialized here.
remainder = mod(n, sixty)
n = n/sixty
! note that fortran indizes start at 1, not at 0.

6

res = base60chars(remainder+1:remainder+1)//trim(res)
! write(*,*) number, remainder, n

end do
! numtosxg = res

end function numtosxg

function sxgtonum(base60string) result (number)
implicit none
! Turn a base60 string into the equivalent integer (number)
character(len=*), intent(in) :: base60string
integer :: i ! running index
integer :: idx, badchar ! found index of char in string
integer(longlong) :: number
! integer,dimension(len_trim(base60string)) :: numbers ! for later openmp
badchar = verify(base60string, base60chars)
if (badchar /= 0) then ! one not

write(*,"(a,i0,a,a)") "# bad char at position ", badchar, ": ", base60string(badchar:badchar)
stop 1 ! with OS-dependent error code 1

end if

number = 0
do i=1, len_trim(base60string)

number = number * 60
idx = index(base60chars, base60string(i:i), .FALSE.) ! not backwards
number = number + (idx-1)

end do
! sxgtonum = number

end function sxgtonum

end module base60conv

program base60
! first step: Base60 encode.
! reference: http://faruk.akgul.org/blog/tantek-celiks-newbase60-in-python-and-java/
! 5000 should be 1PL
use base60conv
implicit none

integer(longlong) :: tests(14) = (/ 5000, 0, 100000, 1, 2, 60, &
61, 59, 5, 100000000, 256, 65536, 215000, 16777216 /)

integer :: i, badchar ! index for the for loop
integer(longlong) :: n ! the current test to run
integer(longlong) :: number
! program arguments

7

character(1000) :: arg
call get_command_argument(1, arg) ! modern fortran 2003!
if (len_trim(arg) == 0) then ! run tests

! I have to declare the return type of the function in the main program, too.
! character(len=1000) :: numtosxg
! integer :: sxgtonum
! test the functions.
do i=1,size(tests)

n = tests(i)
write(*,"(i12,a,a,i12)") n, " ", trim(numtosxg(n)), sxgtonum(trim(numtosxg(n)))

end do
else

if (trim(arg) == "-r") then
call get_command_argument(2, arg)
badchar = verify(arg, " 0123456789")
if (badchar /= 0) then

write(*,"(a,i0,a,a)") "# bad char at position ", badchar, ": ", arg(badchar:badchar)
stop 1 ! with OS-dependent error code 1

end if
read (arg, *) number ! read from arg, write to number
write (*,*) trim(numtosxg(number))

else
write (*,*) sxgtonum(arg)

end if
end if

end program base60

gfortran -std=gnu -O3 fortran-base60.f90 -o fortran-base60
./fortran-base60 P
./fortran-base60 h
./fortran-base60 D
./fortran-base60 PhD
factor $(./fortran-base60 PhD) # yes, it’s prime! :)
./fortran-base60 -r 85333
./fortran-base60 "!" || echo $?
echo "^ with error code on invalid input :)"

23
42
13
85333

85333: 85333
PhD

bad char at position 1: !
1

8

^ with error code on invalid input :)

6 Conclusion

Fortran done right looks pretty clean. It does have its warts, but not more than all the
other languages which are stable enough that the program you write today will still run
in 10 years to come. And it is fast. And free.

Why I’m writing this? To save your a few years of lost time I spent adjusting my mistaken
distaste for a pretty nice language which got a bad reputation because it once was the
language everyone had to learn to get anything done (with sufficient performance). And
its code did once look pretty bad, but that’s long become ancient history — except for
the tools which were so unbelievably good that they are still in use 40 years later.

You can ask "what makes a programming language cool?". One easily overlooked point
is: Making your programs still run three decades later. That doesn’t look fancy and it
doesn’t look modern, but it brings a lot of value.

And if you use it where it is strong, Fortran is almost as easy to write as Python, but
a lot faster (in terms of CPU requirement for the whole task) with much lower resource
consumption (in terms of memory usage and startup time). Should you now ask "what
about multiprocessing?", then have a look at OpenMP.

9

http://www.openmp.org/

	The first program: Hello world :)
	Reading arguments
	Adding structure with modules
	Performance considerations
	A full tool: base60
	Conclusion

