
by Arne Babenhauserheide

s

Gn uFU G N U T E L L A

F O R

U S E R S

Contents
What is Gnutella and how does it
work?

Basics of Gnutella
Network Model: the Original: FoF
Getting in: The first way: Pong Caching
Getting in: The second way: Remember who answers

Recent Changes in Gnutella
Getting in: the third way: GW ebCaches

Problems of the FoF-model -> Changes
Network-Model: Change Who calls whom: Ultrapeers and Leafs
 -UPs really short
 -Ultrapeers and Leafs more detailed
Network model: Intra-Ultrapeer -QRP
Network model: Change searching: Dynamic Querying

Recent Changes Part 2

Finding sources without searching aka the Download-Mesh

Better downloading Part 1: Swarming and Partial File Sharing
Better downloading Part 2: Downloading through Firewalls

File Magnets

Futur e Plans

How to get in?

Editor: ARNE BABENHAUSERHEIDE (http://draketo.de) Beta-Reader:

Copyright (c) 2004 Arne Babenhauserheide.
T h i s w o r k i s l i c e n s e d u n d e r t h e C r e a t i v e C o m m o n s A t t r i b u t i o n - S h a r e A l i k e L i c e n s e . T o v i e w a c o p y o f t h i s
l i c e n s e , v i s i t h t t p : / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / b y - s a / 2 . 0 / d e / o r s e n d a l e t t e r t o C r e a t i v e C o m m o n s , 5 5 9

N a t h a n A b b o t t W a y , S t a n f o r d , C a l i f o r n i a 9 4 3 0 5 , U S A .

Note from the editor: Arne Babenhauserheide wrote most of the document. It was
opened to the public as a wiki around the 30th of November 2003. Everything which
changed since then belongs to the author of that part, and shall be his or her
responsibility (as far as that is possible), and his or her copyyright, as long as a
summary of the changes and a contact-adress (email, webpage or physical) with nick
or name is supplied along.
I thank Janet for very nice proofreading of the english text and enhancements in style
and readability .
I thank the whole GDF for two years in which they tolerated me as a non-
programmer in their forum because I learned a great deal of the informationn in this
document during that time through asking partly quite naive questions (I hope I still
managed to contribute there constructively).
Also I thank stief and et voilà from the Gnutellaforums, who are doing their Job on
the support side without payment and with by far too few thank you's.

W ebsite: http://gnufu.net

Gnutella is an open file sharing Network
originally created by Justin Frankel and T om
Pepper of Nullsoft. It was released on the
companies webpage without asking its
owner AOL and taken down the next day .
This did not stop Gnutella, because after a
few days the protocol had been reverse
engineered (that means people found out
how it worked), and compatible open source
clones started showing up. This parallel
development of dif ferent clients by dif ferent
groups remains the way Gnutella is being
developed today .

Being open means, unlike most other
networks, everyone can write a client which
can access the GNet, if it fulfills the publicly
available specifications. The specifications
are discussed and created by the »GDF (the
Gnutella Development Forum: http://
groups.yahoo.com/group/the_gdf), an open
Mailinglist for developers with by this date
over 1000 members. After that they are

documented in the »rfc-gnutella (http://rfc-
gnutella.sf.net/). That way all programs
share a common base, while the protocol
also allows for client specific options. The
developers are careful to ensure the greatest
possible backwards compatibility .

 Despite the name, Gnutella isn't GNU-
Software, though some Gnutella clients are
GPL-licensed. It is an open network, and the
origin of its name may be found more easily
by eating too much Nutella, than at GNU
(That means: Gnutella is not a project of the
FSF or related to GNU software tools).

 Back to the main focus of this document:
the basic principles of Gnutella, their
evolution during the last few years
(especially the last year) and future plans for
it.

What is Gnutella and how does it work?

Network Model: The Original: FoF

Y ou can imagine the original model of the
Gnutella network as friends phoning each
other to get information. One asks five
others, each of whom asks 5 others and so
on. After the first step the number of people
reached is 5, after the second it is 25, after
the 5th 3125, after the 7th 78,125 and after
the 14th about 6.1 billion. That would be
enough to reach every human being on this
planet. The original Gnutella used 7 steps
(called HTL: Hops T o Live).
 A Problem with this model (among others)
is that you have to be a part of the clique
before you can use it. There have been

several ideas to solve this problem. I will
show you three of them.

Getting in: The first way: Pong-Caching

 Pong Caching means that the node (aka
you) asks its friends who their friends are. It
means your friends introduce you to their
friends, especially friends whom they value
highly , and you write all new adresses in
your phone-book, so you know whom to
phone when your original friends are on
holiday (Somehow like being at a continous
cocktail party). It is easy and has the
advantage of giving you very reliable
contacts, but there is no way of getting into

Basics of Gnutella

the network without knowing at least one
contact who is already in the net. That
means you can always get back in, but won't
be able to connect if you never did before.

 Getting in: The second way: Remember
who answers

 The second way is really simple. When one
of your 5 friends calls back to say Smith
(whom you didn't know before) knows
something, you note her number . When you
call her the next time as one of your five
direct contacts, the chance is greater that you
will get your information more quickly ,

because she will likely have friends who
have similar interests to you (where else
should she have gotten the information?),
and those are more likely to have your
information than randomly picked persons
(at least when you ask about something
similar to your last question). The drawback
is that those contacts might not be at home
often, so it is quite possible that you find a
contact with great knowledge, but whom
you'll never be able to reach again. Still no
way of getting in the first time.
And now we get to one of the recent
developements in Gnutella: GW ebCaches. I
will discuss them in the next part.

Getting in: The third way: GW ebCaches

 T o stay within the picture, a GW ebCache is
a contact who puts his phone number into
the newspapers and keeps a record of those
who call. When you've been away for some
time and are no longer certain if your
contacts still have the same mobile-phone
numbers, you call the publicly known
contact. Before giving you numbers, he will
ask you: "Do you know other publicly
known contacts? If yes, please tell me their
numbers." That is done because they can't
read all the newspapers, and you do it all the
time without working too hard for it. That
way , they keep track of each other . Then the
contact gives you some numbers to call and
notes your number (to give it to someone
else) and the adresses of other public
contacts he knows (GW ebCaches).

 This is roughly the way GW ebCaches work.
As I stated, they are one of the new
developements in Gnutella, and thus I will
now get to some more of the recent changes
within Gnutella and to future plans.

 Sidenote: GwebCaches are essential only
for the first connection, and only when the
local host-cache is empty . They must not be
preferred over your local address-book.

Pr oblems of the FoF-model -> Changes

 The Friend-of-a-Friend model has certain
disadvantages, which have their source in
the way searches are performed. If a search
brings too many results, the nodes through
which you are connected (your nearest 5
friends) can get overloaded, because every
answer has to go through them, for they
don't give out your "phone number", but
their own and hand the answer to you. If you
ask for the name of the head of University in
the campus, you'll get hundreds of answers
in reality , and thousands to millions on the
web. Also, if every question is passed to
every one in a 75,000 to 600,000 computer -
network, and every computer asks only once
an hour , each of them has to answer about
130 to 1600 questions per second. And they
have to pass them on. While computers are
fast, and today's internet connections can
handle quite a lot when compared to the

Recent Changes in Gnutella

connections a few years ago, this is too
much even for them. Just imagine your
phone ringing endlessly the whole day for
all kind of questions.

T o solve this problem, some changes were
made to the FoF model.

Network model: Change who calls whom:
Ultrapeers and Leafs

-UPs r eally short

 Y ou'll surely have friends who know very
many other people, and whom you can ask,
and be sure they'll know exactly the person
who can give you the answer . These are
called Ultrapeers in Gnutella. An Ultrapeer
doesn't have to know much herself, she just
needs to know who knows it. In Gnutella
that means that a good Ultrapeer doesn't
need to have many files to benefit the
network. If you're afraid to share much, you
should become an Ultrapeer in Gnutella

-Ultrapeers and Leafs mor e detailed

 In the Computer W orld, as in the Real
W orld, there are contacts who can cope with
more calls, and those who can't phone often
(or can't af ford the bills). In the Real W orld
this is likely because they have more free
time, whereas, in the Computer W orld, it is
because they have faster connections (Like
DSL, Cable, T1, T3 or similar broadband).
Upon realizing this, the developers decided
to change the topology , that means how the
network looks from the outside when you
draw it. Now you don't just call any of your
friends, but only those of whom you know
that they have the time to take your call and
to send it on to others. T o save you from too
many calls, they then ask you which kinds
of informations you have or , to express it in
a more human way , what your speciality is.
In the Computer W orld that means your

computer sends a list of all its files to the
Ultrapeer , which is how we call these kinds
of contacts. That list doesn't contain the
actual names of your files, but data, which
allows the UP to check if you might have a
file containing a certain keyword. The
mechanism for this will be explained in the
next part discussing QRP . Whenever a call
reaches the Ultrapeer , she checks if you
could know an answer and calls you only in
that case.

 These Ultrapeers have many connections to
others, which means they have a big address
book. Normally they stay in contact with 16
other Ultrapeers whom they have in their
address book and to whom they send
questions, and who send them to 16 more,
each. Also they have about 16 leafs, who
can't or don't want to phone that much, from
which they accept calls, and whose files or ,
for the human world, specialities they know .

 This may seem like a foul bar gain for the
Ultrapeers, who devote far more resources
to keeping the network intact than leafs, but
in fact it isn't. While the Ultrapeer (UP) uses
much of her time for keeping the network
running, the leafs specialize on gathering
and delivering information. So, when
anyone, Ultrapeer or Leaf, wants to know
something, he or she simply starts a call and
a leaf specialist can explain it to them. That
way people specialize to get more for all.

Network model: Intra-ultrapeer QRP

While with Ultrapeers not everyone needs to
participate in sending questions to others,
and people can specialize in sharing their
information instead, the Ultrapeers would
still send every question to everyone,
without ever taking into account if that UP
even has leaves, who have the files. This
sounds normal, for how can an Ultrapeer

know which files the other Ultrapeers have?
The answer comes, again, from real life. A
normal person knows her friends, and knows
who of them might know the answer to a
specific question, and who most surely will
not. In Real Life this is mostly done through
friendly chatting.

 Now , computers normally don't chat idly , so
they don't exchange this information by the
way . Thus the Query Routing Protocol was
developed. There each Leaf tells its
Ultrapeers which files it has, but instead of
taking the names, which would consume too
much space, each word which is part of the
name of a file is saved as numbers (these are
computers after all). Y ou can imagine this
process like a game of dumping ships (the
numbers form the board with two
coordinates). An Ultrapeer doesn't send all
questions to a leaf, but only those which it
might be able to answer (which hit a ship),
and so Leafs get far less needless calls.

 Now when this takes so much pressure of f
the Leafs, why not extend it? Exactly that
was done. Now all Ultrapeers send their
boards to their direct neighbors. They send
only those searches, which have one more
step to go, to other Ultrapeers on whose
board they score a hit. That means, the last
two steps of a search will only be taken
when there is a chance that they give results.
Y ou can see quite simply why this heavily
reduces the bandwidth usage by looking at
an example: Imagine a tree, a normal tree,
not one of those mathematical constructs. If
you try to count the leaves, you have almost
no chance to ever finish. But if you take the
leaves away and count only the branches,
you have far less work to do. If you now
take away all those tiny branches, you can
really begin to count the rest. QRP doesn't
take all leaves and all tiny branches away ,
but it removes those of them who couldn't

give you an answer . Since every part
through which a question has to travel
consumes bandwidth, and there are far more
leaves than branches, taking away , in many
cases, most of the last two steps (that means
many of the leaves and the tiny branches)
reduces the number of questions the
computers have to send on. The example
doesn't work for all of Gnutella, but here it
fits nicely . The people of LimeW ire talk
about 70-80% savings alone through this.

Network model: Change Sear ching:
Dynamic Querying

 Now , while the Ultrapeer model and QRP
partly solve the problem that you don't have
the time to explain something properly to
someone else, or to get it explained, because
the phone rings endlessly for questions to
which you know no answer (or in T ech-
Speech: because the network-traf fic exceeds
your connection-speed), there is still another
problem which might normally not even be
visible, if you look at it. In the Real W orld,
an Ultrapeer will ask for a specialist who
can give you the information until she finds
one, and then stop. In the Computer -W orld,
the question is sent on and on, to as many
contacts as possible, without looking if there
already are answers.

 W ith Dynamic Querying that changes. Now
the Ultrapeers ask one other Ultrapeer at a
time, and wait a bit, to see if they get
answers. When they have enough answers to
be satisfied, they stop asking for more. It
sounds pretty natural, but was quite a big
step for Gnutella because it saves resources
which were wasted on very popular
questions. I'll take the example of the of the
head of university again: now , if you ask for
the head of university , your Ultrapeers will
first see if they know someone directly who
can answer your question. Then they will

the other numbers you know about. That
way , the specialists will get to know each
other (the same way , as the GW ebCaches,
which I mentioned before, learn of others of
their kind). As everyone who asks also
brings her own set of numbers, the
specialists know more and more additional
addresses, and when you ask them to
explain, and they don't have time at the
moment, they give them to you (they do it
even if they have time, just in case they
could be interrupted, and because in
Gnutella you can download from more than
one source at once, just like you can in the
overnet-network (which does this to the
extreme, but is only really ef ficient for big
files)). Additionally , the specialists also add
you to their list of alternate-contacts, as soon
as you know enough to teach others.

 This is why often many people download
files from you which you just downloaded
yourself.

Better Downloading Part1: Swarming
and Partial File Sharing

 Swarming is quickly explained (but hard to
do in the friend-of-a-friend model, so I drop
it for this part only). It works by simply
getting one file from more than one person
at once. The file is separated into several
parts, as if you'd want to get a book from
some friends and every one of them copied
only a few pages of it. When you ask every
one of them to copy a dif ferent part of the
book, you'll get the complete book, and
every friend of yours has only very little
work to do (and if one doesn't have the time
to do it, another one can).

 Swarming works best with the Download
Mesh and Partial File Sharing (PFS), which
allows people to share files which they are
downloading at the moment, because they

simply give you some numbers of people
they know who live on the campus. Y ou will
still get more than one answer because they
will give you more than one number , as they
can't be sure that you'll reach every number
they gave you. But you won't get thousands
of phone-numbers (one from every student
on the campus), first because the Ultrapeers
would waste their time with that on
something which doesn't give you additional
benefit, second, because you couldn't ever
call all those people, and third, because then
you might not reach your Ultrapeers
anymore, because they would be too busy
getting return calls from others who tell
them numbers, and sending your question to
other Ultrapeers.
According to the Bearshare Programmers
this saves another 60% of bandwidth usage.

Finding sour ces withough sear ching aka
the Download-Mesh

 Now you might say , "but I can't download
from those three, because others already do.
I want to get all addresses from which I can
download," (and you are not alone with this.
I feel the same). By looking at the Real
W orld, we can find a solution to this
problem, too, without having to waste too
many resources on it. There (in the Real
W orld), if you ask a specialist to explain
something to you, and that specialist is busy ,
she will know some other specialists
(because they know each other) who might
have more time at the moment.

 Realizing this concept in Gnutella is not as
easy as the Ultrapeer -Leaf Model nor as the
Dynamic-Query Model.
But the programmers found a way . As I
stated in the Dynamic-Query-Model, you
will get more than one number at which you
can ask. Now , when you call someone who
should know the answer , you also give her

from a firewalled specialist, the Ultrapeer
would tell the firewalled person and the
asker to call a third person. That person
would then hold the two phones together . In
Gnutella most People have three to five
phones, so this wouldn't be such a great
problem. These phone-connectors will most
likely be called routing-peers.

File-Magnets

 File-Magnets stray from the Friend of a
Friend model. They are links on webpages,
which you can simply click, and which will
tell your file-sharing program to search
Gnutella (in fact also other networks) for a
specific file, and to download exactly this.

 Y ou can imagine it like an article in a
newspaper which tells you information
which gives your Ultrapeers the exact
information that the specialist, from whom
you want to learn, has to know . In the Real
W orld you would most likely find one
specialist and those who learned from her .

 W ith a magnet-link you can avoid getting
bad files because they use a hash-string,
which is something like a summary of the
information the specialist would give you. If
she begins to tell you crap, you will see at
once that it doesn't fit the summary . In
Gnutella, the program asks for files to which
the people who have them have assigned the
same summary , aka Hash-string. After
downloading, the program does its own
summary and checks if they really match. If
not, it tells you that the file is corrupt. The
summaries from same files are always
exactly the same because they are done via
specific mathematic methods which always
get to the same result when given the same
data (aka information) (Sha1-Hash at the
moment).

can share those parts which they already
have, while they still download from others.
Y ou can copy those pages which you have
without having to have the whole book,
since your pages are all numbered and your
friends can also ask you for certain page
numbers.
The name has no further meaning, but nicely
conjurs the images of antlike fileparts
swarming to your Computer .

Better Downloading Part2: Downloading
thr ough Fir ewalls

 Imagine there were people who couldn't be
called, but could only call others (maybe
because they only use public phones, or their
number isn't displayed on your phone, and
they don't like to give it out because they
don't like being called by telemarketers or
by people terrorizing them over the phone).
In Gnutella these are computers who are
behind a firewall. They can call others and
get information from them, but no one can
call them.

 The solution is to have the firewalled
people call their Ultrapeers regularly , and
when someone wants to call them, she
simply calls the Ultrapeer who then holds
two phones together , one to which the
firewalled person (the one who can't be
called) raised a call, and the one you called.
That way you can talk to the firewalled
person, but it takes two simultaneously
running calls, which means, that it needs
twice the bandwidth in the Computer -W orld.
Firewalled persons always keep their
connection to the Ultrapeers, who simply
relay the information or data.

 There are plans to save the Ultrapeers from
this additional bandwith usage by letting
other people do the phone connecting. Then,
when someone wanted to get information

Gn uFU

 There is now a new version of magnet-
links: KaZaA magnets. Sadly those might
also not be secure, for they use the KaZaA
hashing system (the incomplete summary)
with some changes (they now add another
smaller summary , which might tell you
about the missing parts, but they didn't
publish, how they create it). If KaZaA-
Magnets provide information about a search
term, they might work with Gnutella, but
they won't ensure that you get what they
of fer to you. If you find the word "kzhash"
in the link, it might not be secure (aside
from having a somewhat misplaced name).
Y ou'll find some magnet-links on the pages
listed in the MagnetLists-page
(http://magnetlists.gnufu.net)

 Dif ferent from Magnet-Links, KaZaA-
Links and eDonkey-Links are not secure,
because they use methods which can be
betrayed with false files (for example a
KaZaA-Link asks for a kind of summary
which only checks the introduction and the
first part of the information, but all the rest
is ignored to make the summary quicker to
create. Naturally it is very easy to give you
false information, because specialists only
have to tell the truth at the beginning, then
they can lie or fantasize as much as they
want). Further information on Magnet-Links
can be found here: »Magnet-Uri (http://
magnet-uri.sourcefor ge.net/) and on »http://
www .MagnetLink.or g.

playlists and with additional information
•Privacy (See AnoGnut:
http://anognut.gnufu.net).
•Routing Peers and better Firewall support.
•What's New? - Finding New Files in
Gnutella (implemented by LimeW ire).

•A Community-Feature.
•Encryption - Making it impossible for the
provider to see what you are downloading.
Bearshare already does this for
communicating with other Bearshare-clients.
•Caching of popular content.
•Magma-Lists - Multiple-file-magnets, like

 As the page hosting GnuFU was down two
times during the last week, I decided to no
longer depend completely on any provider to
host this page. Should GnuFU go down due
to any reason, a freenet-mirror of the PWP-
code can be found using the following key:
SSK@1~6U-
1UApvA5hld50tMsau3O5tEP AgM,kr~pLjS
LxfECXC2Mvt3RKw/gnufu/3//index.html
Most times the link "http://free.gnufu.net"
should get you there.
T o access this mirror you need to obtain
freenet from »http://freenetproject.or g.

 T o become part of the Gnutella Network,
you can use one of the clients listed on
http://www .gnutella.com/connect/
(should that be down, just use the list on:
»dmoz (http://dmoz.org/Computers/
Software/Internet/Clients/File_Sharing/
Gnutella/) , or better still, learn to program
and help furthering the development of some
of the open-source clients.

 On the W ebsite of GnuFU you'll also find
Links to several Open Source and Closed
Source Gnutella Clients: http://gnufu.net

Future Plans

How to get in?

Document cr eated by Arne Babenhauser heide
using Ragtime (http://www .ragtime.de)

Last changed: 22. Jun 2004

