(Arne Babenhauserheide)
2017-03-21: clean list benchmark plus fit clean list benchmark plus fit
diff --git a/examples/benchmark.w b/examples/benchmark.w --- a/examples/benchmark.w +++ b/examples/benchmark.w @@ -1,16 +1,19 @@ #!/usr/bin/env sh # -*- wisp -*- -exec guile -L $(dirname $(dirname $(realpath "$0"))) --language=wisp -e '(@@ (examples benchmark) main)' -s "$0" "$@" +exec guile -L $(dirname $(dirname $(realpath "$0"))) --language=wisp -e '(@@ (examples benchmark) main)' -l $(dirname $(realpath "$0"))/cholesky.w -l $(dirname $(realpath "$0"))/ensemble-estimation.w -s "$0" "$@" ; !# define-module : examples benchmark import : statprof ice-9 optargs + ice-9 format srfi srfi-1 + srfi srfi-42 ; list-ec ice-9 pretty-print system vm program + define : benchmark-run fun let profiler : : loop-num 100 statprof-start @@ -76,20 +79,20 @@ define : benchmark-list-append let : (N (list-ref x 0)) (m (list-ref x 1)) benchmark (append a b) :let ((a (iota N))(b (iota m))) . param-list - let : (steps 4) + let : (steps 30) concatenate list let : (param-list (zip (iota steps 1 1000) (iota steps 1 0))) bench-append param-list - let : (param-list (zip (iota steps 1 0) (iota steps 1 100))) + let : (param-list (zip (iota steps 1 0) (iota steps 1 1000))) bench-append param-list let : (param-list (zip (iota steps 1 1000) (iota steps 1 0))) bench-append param-list - let : (param-list (zip (iota steps 1 0) (iota steps 1 100))) + let : (param-list (zip (iota steps 1 0) (iota steps 1 1000))) bench-append param-list let : (param-list (zip (iota steps 1 1000) (iota steps 100000 0))) bench-append param-list - let : (param-list (zip (iota steps 100000 0) (iota steps 1 100))) + let : (param-list (zip (iota steps 100000 0) (iota steps 1 1000))) bench-append param-list ;; stddev from rosetta code: http://rosettacode.org/wiki/Standard_deviation#Scheme @@ -106,12 +109,143 @@ define : running-stddev nums stddev nums . running-stddev-2 + +;; prepare a multi-function fit +import + only : examples ensemble-estimation + . EnSRF make-covariance-matrix-with-offdiagonals-using-stds + . standard-deviation-from-deviations x-deviations->y-deviations + . x^steps + only : ice-9 popen + . open-output-pipe close-pipe + +define : H x pos + . "Observation operator. It generates modelled observations from the input. + +x are parameters to be optimized, pos is another input which is not optimized. For plain functions it could be the position of the measurement on the x-axis. We currently assume absolute knowledge about the position. +" + let : (N (first pos)) (m (second pos)) + + + list-ref x 0 ; constant value + ;; pure N + * (list-ref x 1) : log : + 1 N ; avoid breakage at pos 0 + ; * (list-ref x 2) : sqrt N + * (list-ref x 3) N + ; * (list-ref x 4) : expt N 2 + ; * (list-ref x 5) : expt N 3 + ;; pure m + * (list-ref x 6) : log : + 1 m ; avoid breakage at pos 0 + ; * (list-ref x 7) : sqrt m + * (list-ref x 8) m + ; * (list-ref x 9) : expt m 2 + ; * (list-ref x 10) : expt m 3 + ;; mixed terms + * (list-ref x 11) : log : + 1 N m + * (list-ref x 12) : * N (log (+ 1 m)) + * (list-ref x 13) : * m (log (+ 1 N)) + ; * (list-ref x 14) : * N m + ; * (list-ref x 15) : * (expt N 2) m + ; * (list-ref x 16) : * (expt m 2) N + + +define : interleave lx lz + cond + (null? lx) lz + else + cons : car lx + interleave lz : cdr lx + + +define : print-fit x σ + let : : msg " +~,1,,,,,'ee±~,1,,,,,'ee + ~,1,,,,,'ee±~,1,,,,,'ee log(N) + ~,1,,,,,'ee±~,1,,,,,'ee sqrt(N) + ~,1,,,,,'ee±~,1,,,,,'ee N + ~,1,,,,,'ee±~,1,,,,,'ee N^2 + ~,1,,,,,'ee±~,1,,,,,'ee N^3 + +~,1,,,,,'ee±~,1,,,,,'ee log(m) + ~,1,,,,,'ee±~,1,,,,,'ee sqrt(m) + ~,1,,,,,'ee±~,1,,,,,'ee m + ~,1,,,,,'ee±~,1,,,,,'ee m^2 + ~,1,,,,,'ee±~,1,,,,,'ee m^3 + +~,1,,,,,'ee±~,1,,,,,'ee log(N + m) + ~,1,,,,,'ee±~,1,,,,,'ee N log(m) + ~,1,,,,,'ee±~,1,,,,,'ee m log(N)+ ~,1,,,,,'ee±~,1,,,,,'ee N m + ~,1,,,,,'ee±~,1,,,,,'ee N^2 m + ~,1,,,,,'ee±~,1,,,,,'ee m^2 N +" + apply format + append (list #t msg) (interleave x σ) + + +define : flatten li + append-ec (: i li) i + define : main args - map - lambda : mismatch-fun - write (procedure-name mismatch-fun) - newline - let : (mis (mismatch-fun (benchmark-list-append))) - map : lambda (x) : pretty-print (stddev x) - apply zip mis - list mismatch-to-const-N-m mismatch-to-linear-N-m + ;; map + ;; lambda : mismatch-fun + ;; write (procedure-name mismatch-fun) + ;; newline + ;; let : (mis (mismatch-fun (benchmark-list-append))) + ;; map : lambda (x) : pretty-print (stddev x) + ;; apply zip mis + ;; list mismatch-to-const-N-m mismatch-to-linear-N-m + let* + : bench : benchmark-list-append ;; benchmark results + ; fitting to cost estimates + ensemble-member-count 32 + ensemble-member-plot-skip 4 + x^b : list-ec (: i 17) (car (cdr (car bench))) ; inital guess: constant starting at the first result + x^b-std : list-ec (: i 17) (car (cdr (car bench))) ; inital guess: 100% uncertainty + P : make-covariance-matrix-with-offdiagonals-using-stds x^b-std + y⁰-pos : map car bench + y⁰ : append-map cdr bench + y⁰-std : stddev y⁰ + R : make-covariance-matrix-with-offdiagonals-using-stds : list-ec (: i (length bench)) y⁰-std + optimized : EnSRF H x^b P y⁰ R y⁰-pos ensemble-member-count + x-opt : list-ref optimized 0 + x-deviations : list-ref optimized 1 + x-std + list-ec (: i (length x-opt)) + apply standard-deviation-from-deviations : list-ec (: j x-deviations) : list-ref j i + y-deviations : x-deviations->y-deviations H x-opt x-deviations y⁰-pos + y-stds : list-ec (: i y-deviations) : apply standard-deviation-from-deviations i + y-opt : map (λ (x) (H x-opt x)) y⁰-pos + x^b-deviations-approx + list-ec (: i ensemble-member-count) + list-ec (: j (length x^b)) + * : random:normal + sqrt : list-ref (list-ref P j) j ; only for diagonal P! + y^b-deviations : x-deviations->y-deviations H x^b x^b-deviations-approx y⁰-pos + y-std + apply standard-deviation-from-deviations + flatten y-deviations + y-stds : list-ec (: i y-deviations) : apply standard-deviation-from-deviations i + y^b-stds : list-ec (: i y^b-deviations) : apply standard-deviation-from-deviations i + + ;; print-fit x-std + print-fit x-opt x-std + ; now plot the result + let : : port : open-output-pipe "python2" + format port "import pylab as pl\nimport matplotlib as mpl\n" + format port "y0 = [float(i) for i in '~A'[1:-1].split(' ')]\n" y⁰ + format port "yerr = ~A\n" y⁰-std + format port "ypos1 = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : first i + format port "ypos2 = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : second i + format port "yinit = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x^b i + format port "yinitstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y^b-stds + format port "yopt = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x-opt i + format port "yoptstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y-stds + format port "pl.errorbar(*zip(*sorted(zip(ypos1, yinit))), yerr=zip(*sorted(zip(ypos1, yinitstds)))[1], label='prior vs N')\n" + format port "pl.errorbar(*zip(*sorted(zip(ypos1, yopt))), yerr=zip(*sorted(zip(ypos1, yoptstds)))[1], label='optimized vs N')\n" + format port "eb=pl.errorbar(*zip(*sorted(zip(ypos1, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs N')\neb[-1][0].set_linewidth(1)\n" + format port "pl.errorbar(*zip(*sorted(zip(ypos2, yinit))), yerr=zip(*sorted(zip(ypos2, yinitstds)))[1], label='prior vs. m')\n" + format port "pl.errorbar(*zip(*sorted(zip(ypos2, yopt))), yerr=zip(*sorted(zip(ypos2, yoptstds)))[1], label='optimized vs. m')\n" + format port "eb=pl.errorbar(*zip(*sorted(zip(ypos2, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs. m')\neb[-1][0].set_linewidth(1)\n" + list-ec (: step 0 (length x^steps) 16) + let : : members : list-ref x^steps (- (length x^steps) step 1) + list-ec (: member-idx 0 (length members) ensemble-member-plot-skip) ; reversed + let : : member : list-ref members member-idx + format port "paired = pl.get_cmap('Paired') +cNorm = mpl.colors.Normalize(vmin=~A, vmax=~A) +scalarMap = mpl.cm.ScalarMappable(norm=cNorm, cmap=paired)\n" 0 (length member) + list-ec (: param-idx 0 (length member) 16) ; step = 16 + ; plot parameter 0 + format port "pl.plot(~A, ~A, marker='.', color=scalarMap.to_rgba(~A), linewidth=0, label='', alpha=0.6, zorder=-1)\n" (/ step 1) (+ 80 (* (/ (apply + y-opt) (length y-opt)) (list-ref member param-idx))) param-idx + format port "pl.legend(loc='upper right')\n" + format port "pl.xlabel('position [arbitrary units]')\n" + format port "pl.ylabel('value [arbitrary units]')\n" + format port "pl.title('ensemble optimization results')\n" + format port "pl.xscale('log')\n" + format port "pl.yscale('log')\n" + format port "pl.show()\n" + format port "exit()\n" + close-pipe port diff --git a/examples/ensemble-estimation.w b/examples/ensemble-estimation.w --- a/examples/ensemble-estimation.w +++ b/examples/ensemble-estimation.w @@ -34,7 +34,10 @@ exec guile -L $(dirname $(dirname $(real ;; x'^a = x'^b - αK·H(x'^b) define-module : examples ensemble-estimation - . #:export : EnSRF H standard-deviation-from-deviations make-covariance-matrix-with-offdiagonals-using-stds + . #:export (EnSRF H standard-deviation-from-deviations + make-covariance-matrix-with-offdiagonals-using-stds + x-deviations->y-deviations x^steps) + use-modules : srfi srfi-42 ; list-ec srfi srfi-9 ; records oop goops ; generic functions @@ -276,8 +279,8 @@ Limitations: y is a single value. R and if : equal? 1-AK '() set! 1-AK : list-ec (: i K) {1 - i} ; init set! 1-AK : list-ec (: i (length K)) : * (list-ref 1-AK i) {1 - (abs (list-ref K i))} - display 1-AK ; TODO: What does this actually signify? - newline + ;; display 1-AK ; TODO: What does this actually signify? + ;; newline step cdr observations-to-process cdr observation-variances