(Arne Babenhauserheide)
2017-03-21: Plot fit results for datastructure scaling behavior Plot fit results for datastructure scaling behavior
diff --git a/examples/benchmark.w b/examples/benchmark.w --- a/examples/benchmark.w +++ b/examples/benchmark.w @@ -55,20 +55,12 @@ define-syntax benchmark #' benchmark-fun . (lambda () thunk) args ... -;; TODO: Use fit to different mappings. -define : mismatch-to-const-N-m timing-list - define : N-m x - define : const y - car : cdr x - map const : car x - map N-m timing-list - -define : mismatch-to-linear-N-m timing-list - define : N-m x - define : linear y - / (car (cdr x)) y - map linear : car x - map N-m timing-list +define : logiota steps start stepsize + . "Create numbers evenly spread in log space" + let* + : logstart : log (+ start 1) + logstep : / (- (log (+ start (* stepsize (- steps 1)))) logstart) (- steps 1) + map inexact->exact : map round : map exp : iota steps logstart logstep define : benchmark-list-append . "Test (append a b) with lists of different lengths." @@ -79,21 +71,21 @@ define : benchmark-list-append let : (N (list-ref x 0)) (m (list-ref x 1)) benchmark (append a b) :let ((a (iota N))(b (iota m))) . param-list - let : (steps 30) + let : (steps 50) concatenate list - let : (param-list (zip (iota steps 1 1000) (iota steps 1 0))) - bench-append param-list - let : (param-list (zip (iota steps 1 0) (iota steps 1 1000))) - bench-append param-list - let : (param-list (zip (iota steps 1 1000) (iota steps 1 0))) + let : (param-list (zip (logiota steps 1 100) (logiota steps 1 0))) bench-append param-list - let : (param-list (zip (iota steps 1 0) (iota steps 1 1000))) - bench-append param-list - let : (param-list (zip (iota steps 1 1000) (iota steps 100000 0))) - bench-append param-list - let : (param-list (zip (iota steps 100000 0) (iota steps 1 1000))) - bench-append param-list + ;; let : (param-list (zip (logiota steps 100 0) (logiota steps 1 100))) + ;; bench-append param-list + ;; let : (param-list (zip (logiota steps 1 1000) (logiota steps 1 0))) + ;; bench-append param-list + ;; let : (param-list (zip (logiota steps 1 0) (logiota steps 1 1000))) + ;; bench-append param-list + ;; let : (param-list (zip (logiota steps 1 1000) (logiota steps 100000 0))) + ;; bench-append param-list + ;; let : (param-list (zip (logiota steps 100000 0) (logiota steps 1 1000))) + ;; bench-append param-list ;; stddev from rosetta code: http://rosettacode.org/wiki/Standard_deviation#Scheme define : stddev nums @@ -128,24 +120,24 @@ x are parameters to be optimized, pos is + list-ref x 0 ; constant value ;; pure N - * (list-ref x 1) : log : + 1 N ; avoid breakage at pos 0 - ; * (list-ref x 2) : sqrt N + * (list-ref x 1) : log (+ 1 N) ; avoid breakage at pos 0 + * (list-ref x 2) : sqrt N * (list-ref x 3) N - ; * (list-ref x 4) : expt N 2 - ; * (list-ref x 5) : expt N 3 + * (list-ref x 4) : * N : log (+ 1 N) + * (list-ref x 5) : expt N 2 ;; pure m - * (list-ref x 6) : log : + 1 m ; avoid breakage at pos 0 - ; * (list-ref x 7) : sqrt m + * (list-ref x 6) : log (+ 1 m) ; avoid breakage at pos 0 + * (list-ref x 7) : sqrt m * (list-ref x 8) m - ; * (list-ref x 9) : expt m 2 - ; * (list-ref x 10) : expt m 3 + * (list-ref x 9) : * m : log (+ 1 m) + * (list-ref x 10) : expt m 2 ;; mixed terms - * (list-ref x 11) : log : + 1 N m - * (list-ref x 12) : * N (log (+ 1 m)) - * (list-ref x 13) : * m (log (+ 1 N)) - ; * (list-ref x 14) : * N m - ; * (list-ref x 15) : * (expt N 2) m - ; * (list-ref x 16) : * (expt m 2) N + * (list-ref x 11) : log (+ 1 N m) + * (list-ref x 12) : * N : log (+ 1 m) + * (list-ref x 13) : * m : log (+ 1 N) + * (list-ref x 14) : * N m + * (list-ref x 15) : * (expt N 2) m + * (list-ref x 16) : * (expt m 2) N define : interleave lx lz @@ -157,13 +149,21 @@ define : interleave lx lz define : print-fit x σ - let : : msg " -~,1,,,,,'ee±~,1,,,,,'ee + ~,1,,,,,'ee±~,1,,,,,'ee log(N) + ~,1,,,,,'ee±~,1,,,,,'ee sqrt(N) + ~,1,,,,,'ee±~,1,,,,,'ee N + ~,1,,,,,'ee±~,1,,,,,'ee N^2 + ~,1,,,,,'ee±~,1,,,,,'ee N^3 + -~,1,,,,,'ee±~,1,,,,,'ee log(m) + ~,1,,,,,'ee±~,1,,,,,'ee sqrt(m) + ~,1,,,,,'ee±~,1,,,,,'ee m + ~,1,,,,,'ee±~,1,,,,,'ee m^2 + ~,1,,,,,'ee±~,1,,,,,'ee m^3 + -~,1,,,,,'ee±~,1,,,,,'ee log(N + m) + ~,1,,,,,'ee±~,1,,,,,'ee N log(m) + ~,1,,,,,'ee±~,1,,,,,'ee m log(N)+ ~,1,,,,,'ee±~,1,,,,,'ee N m + ~,1,,,,,'ee±~,1,,,,,'ee N^2 m + ~,1,,,,,'ee±~,1,,,,,'ee m^2 N -" - apply format - append (list #t msg) (interleave x σ) + . "Print the big-O parameters which are larger than σ (their standard deviation)." + let : : number-format "~,1,,,,,'ee±~,1,,,,,'ee" + let big-O + : names : list "" "log(N)" "sqrt(N)" "N log(N)" "N^2" "log(m)" "sqrt(m)" "m" "m log(m)" "m^2" "log(N + m)" "N log(m)" "m log(N)" "N m" "N^2 m" "m^2 N" + x x + σ σ + cond + : or (null? names) (null? x) (null? σ) + newline + : > (abs (car x)) (car σ) + format #t : string-append number-format " " (car names) " " + . (car x) (car σ) + big-O (cdr names) (cdr x) (cdr σ) + else + big-O (cdr names) (cdr x) (cdr σ) define : flatten li @@ -180,15 +180,19 @@ define : main args ;; list mismatch-to-const-N-m mismatch-to-linear-N-m let* : bench : benchmark-list-append ;; benchmark results - ; fitting to cost estimates - ensemble-member-count 32 + ;; fitting to cost estimates + ensemble-member-count 128 ensemble-member-plot-skip 4 - x^b : list-ec (: i 17) (car (cdr (car bench))) ; inital guess: constant starting at the first result - x^b-std : list-ec (: i 17) (car (cdr (car bench))) ; inital guess: 100% uncertainty + y_0 : apply min : map car : map cdr bench + y_m : apply max : map car : map cdr bench + nb : apply max : interleave (map car (map car bench)) (map car (map cdr (map car bench))) + ;; "const" "log(N)" "sqrt(N)" "N" "N^2" "N^3" "log(m)" "sqrt(m)" "m" "m^2" "m^3" "log(N + m)" "N log(m)" "m log(N)" "N m" "N^2 m" "m^2 N" + x^b : list y_0 (/ y_m (log nb)) (/ y_m (sqrt nb)) (/ y_m nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m (log nb)) (/ y_m (sqrt nb)) (/ y_m nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m nb nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m nb nb nb) (/ y_m nb nb nb nb) (/ y_m nb nb nb nb) ; inital guess: constant starting at the first result + x^b-std : list-ec (: i x^b) i ; inital guess: 100% uncertainty P : make-covariance-matrix-with-offdiagonals-using-stds x^b-std y⁰-pos : map car bench y⁰ : append-map cdr bench - y⁰-std : stddev y⁰ + y⁰-std : list-ref (sort y⁰ <) : round : / (length y⁰) 16 ; lower octile median R : make-covariance-matrix-with-offdiagonals-using-stds : list-ec (: i (length bench)) y⁰-std optimized : EnSRF H x^b P y⁰ R y⁰-pos ensemble-member-count x-opt : list-ref optimized 0 @@ -224,28 +228,33 @@ define : main args format port "yinitstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y^b-stds format port "yopt = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x-opt i format port "yoptstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y-stds - format port "pl.errorbar(*zip(*sorted(zip(ypos1, yinit))), yerr=zip(*sorted(zip(ypos1, yinitstds)))[1], label='prior vs N')\n" - format port "pl.errorbar(*zip(*sorted(zip(ypos1, yopt))), yerr=zip(*sorted(zip(ypos1, yoptstds)))[1], label='optimized vs N')\n" + ;; format port "pl.errorbar(*zip(*sorted(zip(ypos1, yinit))), yerr=zip(*sorted(zip(ypos1, yinitstds)))[1], label='prior vs N')\n" + format port "pl.errorbar(*zip(*sorted(zip(ypos1, yopt))), yerr=zip(*sorted(zip(ypos1, yoptstds)))[1], marker='+', mew=2, ms=10, linewidth=0.1, label='optimized vs N')\n" format port "eb=pl.errorbar(*zip(*sorted(zip(ypos1, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs N')\neb[-1][0].set_linewidth(1)\n" - format port "pl.errorbar(*zip(*sorted(zip(ypos2, yinit))), yerr=zip(*sorted(zip(ypos2, yinitstds)))[1], label='prior vs. m')\n" - format port "pl.errorbar(*zip(*sorted(zip(ypos2, yopt))), yerr=zip(*sorted(zip(ypos2, yoptstds)))[1], label='optimized vs. m')\n" + ;; format port "pl.errorbar(*zip(*sorted(zip(ypos2, yinit))), yerr=zip(*sorted(zip(ypos2, yinitstds)))[1], label='prior vs. m')\n" + format port "pl.errorbar(*zip(*sorted(zip(ypos2, yopt))), yerr=zip(*sorted(zip(ypos2, yoptstds)))[1], marker='+', mew=2, ms=10, linewidth=0.1, label='optimized vs. m')\n" format port "eb=pl.errorbar(*zip(*sorted(zip(ypos2, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs. m')\neb[-1][0].set_linewidth(1)\n" - list-ec (: step 0 (length x^steps) 16) + format port "pl.plot(sorted(ypos1), pl.log(sorted(ypos1))*(max(y0) / pl.log(max(ypos1))), label='log(N)')\n" + format port "pl.plot(sorted(ypos1), pl.sqrt(sorted(ypos1))*(max(y0) / pl.sqrt(max(ypos1))), label='sqrt(N)')\n" + format port "pl.plot(sorted(ypos1), pl.multiply(sorted(ypos1), max(y0) / max(ypos1)), label='N')\n" + list-ec (: step 0 (length x^steps) 4) let : : members : list-ref x^steps (- (length x^steps) step 1) list-ec (: member-idx 0 (length members) ensemble-member-plot-skip) ; reversed let : : member : list-ref members member-idx format port "paired = pl.get_cmap('Paired') cNorm = mpl.colors.Normalize(vmin=~A, vmax=~A) scalarMap = mpl.cm.ScalarMappable(norm=cNorm, cmap=paired)\n" 0 (length member) - list-ec (: param-idx 0 (length member) 16) ; step = 16 - ; plot parameter 0 - format port "pl.plot(~A, ~A, marker='.', color=scalarMap.to_rgba(~A), linewidth=0, label='', alpha=0.6, zorder=-1)\n" (/ step 1) (+ 80 (* (/ (apply + y-opt) (length y-opt)) (list-ref member param-idx))) param-idx + list-ec (: param-idx 0 (length member) 4) ; step = 4 + ;; plot parameter 0 + let : (offset (/ (apply max (append y⁰ y-opt)) 2)) (spreading (/ (apply max (append y⁰ y-opt)) (- (apply max member) (apply min member)))) + format port "pl.plot(~A, ~A, marker='.', color=scalarMap.to_rgba(~A), linewidth=0, label='', alpha=0.6, zorder=-1)\n" + . (/ step 1) (+ offset (* spreading (list-ref member param-idx))) param-idx format port "pl.legend(loc='upper right')\n" format port "pl.xlabel('position [arbitrary units]')\n" format port "pl.ylabel('value [arbitrary units]')\n" - format port "pl.title('ensemble optimization results')\n" + format port "pl.title('~A')\n" "Operation scaling behaviour" format port "pl.xscale('log')\n" - format port "pl.yscale('log')\n" + ;; format port "pl.yscale('log')\n" format port "pl.show()\n" format port "exit()\n" close-pipe port