(Arne Babenhauserheide)
2017-03-21: Allow selecting the fit functions as keyword arguments Allow selecting the fit functions as keyword arguments
diff --git a/examples/benchmark.w b/examples/benchmark.w --- a/examples/benchmark.w +++ b/examples/benchmark.w @@ -74,7 +74,7 @@ define : benchmark-list-append let : (steps 100) concatenate list - let : (param-list (zip (logiota steps 1 10000) (logiota steps 1 0))) + let : (param-list (zip (logiota steps 1 100) (logiota steps 1 0))) bench-append param-list ;; let : (param-list (zip (logiota steps 20 0) (logiota steps 1 10000))) ;; bench-append param-list @@ -111,35 +111,53 @@ import only : ice-9 popen . open-output-pipe close-pipe -define : H x pos +define-syntax-rule : or0 test c ... + if test : begin c ... + . 0 + +define-syntax-rule : define-quoted sym val + ;; set the value to true using eval to break the symbol->variable barrier + primitive-eval `(define ,sym val) + +define* + H-N-m x pos #:key all const OlogN OsqrtN ON ONlogN ON² + . Ologm Osqrtm Om Omlogm Om² + . OlogNm ONlogm OmlogN ONm + . ON²m Om²N OsinN/N Osinm/m . "Observation operator. It generates modelled observations from the input. x are parameters to be optimized, pos is another input which is not optimized. For plain functions it could be the position of the measurement on the x-axis. We currently assume absolute knowledge about the position. " + when all + let lp : (l '(const OlogN OsqrtN ON ONlogN ON² Ologm Osqrtm Om Omlogm Om² OlogNm ONlogm OmlogN ONm ON²m Om²N OsinN/N Osinm/m)) + when : not : null? l + define-quoted (car l) #t + lp : cdr l + let : (N (first pos)) (m (second pos)) + - list-ref x 0 ; constant value + or0 const : list-ref x 0 ; constant value ;; pure N - * (list-ref x 1) : log (+ 1 N) ; avoid breakage at pos 0 - * (list-ref x 2) : sqrt N - * (list-ref x 3) N - * (list-ref x 4) : * N : log (+ 1 N) - * (list-ref x 5) : expt N 2 + or0 OlogN : * (list-ref x 1) : log (+ 1 N) ; avoid breakage at pos 0 + or0 OsqrtN : * (list-ref x 2) : sqrt N + or0 ON : * (list-ref x 3) N + or0 ONlogN : * (list-ref x 4) : * N : log (+ 1 N) + or0 ON² : * (list-ref x 5) : expt N 2 ;; pure m - * (list-ref x 6) : log (+ 1 m) ; avoid breakage at pos 0 - * (list-ref x 7) : sqrt m - * (list-ref x 8) m - * (list-ref x 9) : * m : log (+ 1 m) - * (list-ref x 10) : expt m 2 + or0 Ologm : * (list-ref x 6) : log (+ 1 m) ; avoid breakage at pos 0 + or0 Osqrtm : * (list-ref x 7) : sqrt m + or0 Om : * (list-ref x 8) m + or0 Omlogm : * (list-ref x 9) : * m : log (+ 1 m) + or0 Om² : * (list-ref x 10) : expt m 2 ;; mixed terms - * (list-ref x 11) : log (+ 1 N m) - * (list-ref x 12) : * N : log (+ 1 m) - * (list-ref x 13) : * m : log (+ 1 N) - * (list-ref x 14) : * N m - * (list-ref x 15) : * (expt N 2) m - * (list-ref x 16) : * (expt m 2) N - * (list-ref x 17) : / (sin (- N (list-ref x 18))) N ; sin(x)/x - * (list-ref x 19) : / (sin (- m (list-ref x 20))) m ; sin(x)/x + or0 OlogNm : * (list-ref x 11) : log (+ 1 N m) + or0 ONlogm : * (list-ref x 12) : * N : log (+ 1 m) + or0 OmlogN : * (list-ref x 13) : * m : log (+ 1 N) + or0 ONm : * (list-ref x 14) : * N m + or0 ON²m : * (list-ref x 15) : * (expt N 2) m + or0 Om²N : * (list-ref x 16) : * (expt m 2) N + or0 OsinN/N : * (list-ref x 17) : / (sin (/ (- N (list-ref x 18)) (list-ref x 19))) N ; sin(x)/x + or0 Osinm/m : * (list-ref x 20) : / (sin (/ (- m (list-ref x 21)) (list-ref x 22))) m ; sin(x)/x define : interleave lx lz @@ -154,7 +172,7 @@ define : print-fit x σ . "Print the big-O parameters which are larger than σ (their standard deviation)." let : : number-format "~,1,,,,,'ee±~,1,,,,,'ee" let big-O - : names : list "" "log(N)" "sqrt(N)" "N log(N)" "N^2" "log(m)" "sqrt(m)" "m" "m log(m)" "m^2" "log(N + m)" "N log(m)" "m log(N)" "N m" "N^2 m" "m^2 N" "sin(N-x)/N" "sin(N-x)/N" "sin(m-x)/m" "sin(m-x)/m" + : names : list "" "log(N)" "sqrt(N)" "N log(N)" "N^2" "log(m)" "sqrt(m)" "m" "m log(m)" "m^2" "log(N + m)" "N log(m)" "m log(N)" "N m" "N^2 m" "m^2 N" "sin((N-x)/p)/N" "sin((N-x*)/p)/N" "sin((N-x)/p*)/N" "sin((m-x)/p)/m" "sin((m-x*)/p)/m" "sin((m-x)/p*)/m" x x σ σ cond @@ -172,7 +190,7 @@ define : flatten li append-ec (: i li) i ;; TODO: add filename and title and fix the units -define* : plot-benchmark-result bench +define* : plot-benchmark-result bench H let* : ensemble-member-count 256 ensemble-member-plot-skip 4 @@ -180,7 +198,7 @@ define* : plot-benchmark-result bench y_m : apply max : map car : map cdr bench nb : apply max : interleave (map car (map car bench)) (map car (map cdr (map car bench))) ;; "const" "log(N)" "sqrt(N)" "N" "N^2" "N^3" "log(m)" "sqrt(m)" "m" "m^2" "m^3" "log(N + m)" "N log(m)" "m log(N)" "N m" "N^2 m" "m^2 N" - x^b : list y_0 (/ y_m (log nb)) (/ y_m (sqrt nb)) (/ y_m nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m (log nb)) (/ y_m (sqrt nb)) (/ y_m nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m nb nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m nb nb nb) (/ y_m nb nb nb nb) (/ y_m nb nb nb nb) y_0 (/ nb 10) y_0 (/ nb 10) ; inital guess: constant starting at the first result + x^b : list y_0 (/ y_m (log nb)) (/ y_m (sqrt nb)) (/ y_m nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m (log nb)) (/ y_m (sqrt nb)) (/ y_m nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m nb nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m nb nb nb) (/ y_m nb nb nb nb) (/ y_m nb nb nb nb) y_0 (/ nb 100) 10000 y_0 (/ nb 100) 10000 ; inital guess: constant starting at the first result x^b-std : list-ec (: i x^b) i ; inital guess: 100% uncertainty P : make-covariance-matrix-with-offdiagonals-using-stds x^b-std y⁰-pos : map car bench @@ -210,6 +228,8 @@ define* : plot-benchmark-result bench ;; print-fit x-std print-fit x-opt x-std + ;; TODO: minimize y-mismatch * y-uncertainty + format #t "Model standard deviation (uncertainty): ~,4e\n" y-std ; now plot the result let : : port : open-output-pipe "python2" format port "import pylab as pl\nimport matplotlib as mpl\n" @@ -222,10 +242,10 @@ define* : plot-benchmark-result bench format port "yopt = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x-opt i format port "yoptstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y-stds ;; format port "pl.errorbar(*zip(*sorted(zip(ypos1, yinit))), yerr=zip(*sorted(zip(ypos1, yinitstds)))[1], label='prior vs N')\n" - format port "pl.errorbar(*zip(*sorted(zip(ypos1, yopt))), yerr=zip(*sorted(zip(ypos1, yoptstds)))[1], marker='+', mew=2, ms=10, linewidth=0.1, label='optimized vs N')\n" + format port "pl.errorbar(*zip(*sorted(zip(ypos1, yopt))), yerr=zip(*sorted(zip(ypos1, yoptstds)))[1], marker='H', mew=0, ms=10, linewidth=0.1, label='optimized vs N')\n" format port "eb=pl.errorbar(*zip(*sorted(zip(ypos1, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs N')\neb[-1][0].set_linewidth(1)\n" ;; format port "pl.errorbar(*zip(*sorted(zip(ypos2, yinit))), yerr=zip(*sorted(zip(ypos2, yinitstds)))[1], label='prior vs. m')\n" - format port "pl.errorbar(*zip(*sorted(zip(ypos2, yopt))), yerr=zip(*sorted(zip(ypos2, yoptstds)))[1], marker='+', mew=2, ms=10, linewidth=0.1, label='optimized vs. m')\n" + format port "pl.errorbar(*zip(*sorted(zip(ypos2, yopt))), yerr=zip(*sorted(zip(ypos2, yoptstds)))[1], marker='h', mew=0, ms=10, linewidth=0.1, label='optimized vs. m')\n" format port "eb=pl.errorbar(*zip(*sorted(zip(ypos2, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs. m')\neb[-1][0].set_linewidth(1)\n" format port "pl.plot(sorted(ypos1+ypos2), pl.log(sorted(ypos1+ypos2))*(max(y0) / pl.log(max(ypos1+ypos2))), label='log(x)')\n" format port "pl.plot(sorted(ypos1+ypos2), pl.sqrt(sorted(ypos1+ypos2))*(max(y0) / pl.sqrt(max(ypos1+ypos2))), label='sqrt(x)')\n" @@ -242,7 +262,7 @@ scalarMap = mpl.cm.ScalarMappable(norm=c let : (offset (/ (apply max (append y⁰ y-opt)) 2)) (spreading (/ (apply max (append y⁰ y-opt)) (- (apply max member) (apply min member)))) format port "pl.plot(~A, ~A, marker='.', color=scalarMap.to_rgba(~A), linewidth=0, label='', alpha=0.6, zorder=-1)\n" . (/ step 1) (+ offset (* spreading (list-ref member param-idx))) param-idx - format port "pl.legend(loc='lower right')\n" + format port "pl.legend(loc='upper left')\n" format port "pl.xlabel('position [arbitrary units]')\n" format port "pl.ylabel('value [arbitrary units]')\n" format port "pl.title('~A')\n" "Operation scaling behaviour" @@ -256,4 +276,5 @@ scalarMap = mpl.cm.ScalarMappable(norm=c define : main args let* : bench : benchmark-list-append ;; benchmark results - plot-benchmark-result bench + H : lambda (x pos) (H-N-m x pos #:const #t #:ON #t #:ONlogN #t) + plot-benchmark-result bench H