(Arne Babenhauserheide)
2016-01-19: ensemble estimation: refactor + more output. ensemble estimation: refactor + more output.
diff --git a/examples/ensemble-estimation.w b/examples/ensemble-estimation.w --- a/examples/ensemble-estimation.w +++ b/examples/ensemble-estimation.w @@ -78,19 +78,31 @@ define* : write-multiple . x ;; Start with the simple case: One variable and independent observations (R diagonal) ;; First define a truth -define x^seed '(0.5 0.6 7 0.1 0.7 0.9 0.8 0.4) +define x^seed '(0.5 0.6 2 0.1) ; 0.7 0.9 0.8 0.4) +;; The size is the length of the seed, squared, each multiplied by each define x^true : append-ec (: i (length x^seed)) : list-ec (: j x^seed) : * j : list-ref x^seed i ;; And add an initial guess of the parameters -define x^b : append-ec (: i (length x^seed)) '(1 1 1 1 1 1 1 1) ; initial guess -define P : make-covariance-matrix-from-standard-deviations : append-ec (: i (length x^seed)) '(0.5 0.1 0.3 0.1 0.2 0.2 0.2 0.2) +define x^b : append-ec (: i (length x^seed)) '(1 1 1 1) ; 1 1 1 1) ; initial guess +define P : make-covariance-matrix-from-standard-deviations : append-ec (: i (length x^seed)) '(0.5 0.1 0.3 0.1) ; 0.2 0.2 0.2 0.2) ;; Then generate observations -define y⁰-num 3000 +define y⁰-num 1000 define y⁰-pos-max 100 ;; At the positions where they are measured. Drawn randomly to avoid ;; giving an undue weight to later values. define y⁰-pos : list-ec (: i y⁰-num) : * (random:uniform) y⁰-pos-max +define : H-single-parameter xi xi-pos pos + . "Observation function for a single parameter." + let* + : xi-posdist : abs : / {pos - xi-pos} {y⁰-pos-max / 20} + cond + : < 5 xi-posdist + . 0 + else + * xi pos + exp : - : expt xi-posdist 2 + ;; We need an observation operator to generate observations from true values define : H x pos . "Observation operator. It generates modelled observations from the input. @@ -103,20 +115,16 @@ x are parameters to be optimized, pos is x-pos : list-ec (: i len) : * ystretch {{i + 0.5} / {len + 1}} apply + list-ec (: i len) - * : list-ref x i - . pos - exp - - - expt - / {pos - (list-ref x-pos i)} {ystretch / 20} - . 2 - + H-single-parameter + list-ref x i + list-ref x-pos i + . pos ;; We start with true observations which we will disturb later to get ;; the equivalent of measured observations define y^true : list-ec (: i y⁰-pos) : H x^true i ;; now we disturb the observations with a fixed standard deviation. This assumes uncorrelated observations. -define y⁰-std 50 +define y⁰-std 10 define y⁰ : list-ec (: i y^true) : + i : * y⁰-std : random:normal ;; and define the covariance matrix. This assumes uncorrelated observations. define R : make-covariance-matrix-from-standard-deviations : list-ec (: i y⁰-num) y⁰-std @@ -201,21 +209,40 @@ Limitations: y is a single value. R and define : main args let* - : optimized : EnSRT H x^b P y⁰ R y⁰-pos 30 + : optimized : EnSRT H x^b P y⁰ R y⁰-pos 100 x-opt : list-ref optimized 0 x-deviations : list-ref optimized 1 ; std : sqrt : * {1 / {(length x-deviations) - 1}} : sum-ec (: i x-deviations) : expt i 2 - format #t "x⁰: ~A ± ~A\nx: ~A ± ~A\nx^t:~A\ny: ~A ± \ny⁰: ~A ± ~A\nnoise: ~A\n" + format #t "x⁰: ~A ± ~A\nx: ~A ± ~A\nx^t: ~A\nx-t/σ:~A\ny̅: ~A ± ~A\ny̅⁰: ~A ± ~A\ny̅^t: ~A\nnoise:~A\n" . x^b list-ec (: i (length x^b)) : list-ref (list-ref P i) i . x-opt list-ec (: i (length x-opt)) apply standard-deviation-from-deviations : list-ec (: j x-deviations) : list-ref j i . x^true + list-ec (: i (length x-opt)) + / : - (list-ref x-opt i) (list-ref x^true i) + apply standard-deviation-from-deviations : list-ec (: j x-deviations) : list-ref j i * {1 / (length y⁰)} : apply + : map (lambda (x) (H x-opt x)) y⁰-pos + apply standard-deviation-from-deviations + append-ec (: i (length x-deviations)) + let* + : + x-opt+dev + list-ec (: j (length x-opt)) + + : list-ref x-opt j + list-ref + list-ref x-deviations i + . j + y-opt+dev : map (lambda (x) (H x-opt+dev x)) y⁰-pos + y-opt : map (lambda (x) (H x-opt x)) y⁰-pos + map (lambda (x y) (- x y)) y-opt+dev y-opt + ; list-ec (: i (length y-opt)) + ; - (list-ref y-opt+dev i) (list-ref y-opt i) ; apply standard-deviation-from-deviations : map H x-deviations ; FIXME: This only works for trivial H. mean y⁰ standard-deviation y⁰ + * {1 / (length y⁰)} : apply + : map (lambda (x) (H x^true x)) y⁰-pos . y⁰-std ; now plot the result let : : port : open-output-pipe "python"