(Arne Babenhauserheide)
2016-11-26: adjust values to better show the performance tip adjust values to better show the performance
diff --git a/examples/ensemble-estimation.w b/examples/ensemble-estimation.w --- a/examples/ensemble-estimation.w +++ b/examples/ensemble-estimation.w @@ -120,8 +120,8 @@ define* : write-multiple . x ;; Start with the simple case: One variable and independent observations (R diagonal) ;; First define a truth -define x^seed '(-3 2 -1) ; 0.7 0.9 0.8 0.4) -define x^seed-std '(0.5 0.3 0.2) ; 0.2 0.2 0.2 0.2) +define x^seed '(-2 3 -1) ; 0.7 0.9 0.8 0.4) +define x^seed-std '(3 4 2) ; 0.2 0.2 0.2 0.2) ;; The size is the length of the seed, squared, each multiplied by each define x^true : append-ec (: i (length x^seed)) : list-ec (: j x^seed) : * j : list-ref x^seed i ;; And add an initial guess of the parameters @@ -132,7 +132,7 @@ define x^b-std : append-ec (: i (length define P : make-covariance-matrix-from-standard-deviations x^b-std ;; Then generate observations -define y⁰-num 400 +define y⁰-num 80 define y⁰-pos-max 100 define y⁰-plot-skip : max 1 : * (/ 5 2) {y⁰-num / y⁰-pos-max} ;; At the positions where they are measured. Drawn randomly to avoid @@ -181,7 +181,7 @@ x are parameters to be optimized, pos is ;; the equivalent of measured observations define y^true : list-ec (: i y⁰-pos) : H x^true i ;; now we disturb the observations with a fixed standard deviation. This assumes uncorrelated observations. -define y⁰-std 2 +define y⁰-std 100 define y⁰ : list-ec (: i y^true) : + i : * y⁰-std : random:normal ;; and define the covariance matrix. This assumes uncorrelated observations. define R : make-covariance-matrix-from-standard-deviations : list-ec (: i y⁰-num) y⁰-std