#!/usr/bin/env sh # -*- wisp -*- exec guile -L $(dirname $(dirname $(realpath "$0"))) --language=wisp -e '(@@ (examples benchmark) main)' -l $(dirname $(realpath "$0"))/cholesky.w -l $(dirname $(realpath "$0"))/ensemble-estimation.w -s "$0" "$@" ; !# define-module : examples benchmark import : statprof ice-9 optargs ice-9 format srfi srfi-1 srfi srfi-42 ; list-ec ice-9 pretty-print system vm program define : benchmark-run fun let profiler : : loop-num 100 statprof-start with-output-to-string lambda () let lp : (i loop-num) fun when (> i 0) lp (- i 1) statprof-stop if : > (statprof-sample-count) 10 / (statprof-accumulated-time) (statprof-sample-count) profiler (* 10 loop-num) define loopcost benchmark-run (λ() #f) ;; TODO: Simplify #:key setup -> . setup define* : benchmark-fun fun #:key setup when setup setup - : benchmark-run fun . loopcost define-syntax benchmark ;; one single benchmark lambda : x syntax-case x (:let :setup) : _ thunk :setup setup-thunk :let let-thunk args ... #' benchmark thunk :let let-thunk :setup setup-thunk args ... : _ thunk :let let-thunk :setup setup-thunk args ... #' benchmark thunk :let let-thunk #:setup (lambda () setup-thunk) args ... : _ thunk :setup setup-thunk args ... #' benchmark thunk #:setup (lambda () setup-thunk) args ... : _ thunk :let let-thunk args ... #' let let-thunk benchmark thunk args ... : _ thunk args ... #' benchmark-fun . (lambda () thunk) args ... ;; TODO: Use fit to different mappings. define : mismatch-to-const-N-m timing-list define : N-m x define : const y car : cdr x map const : car x map N-m timing-list define : mismatch-to-linear-N-m timing-list define : N-m x define : linear y / (car (cdr x)) y map linear : car x map N-m timing-list define : benchmark-list-append . "Test (append a b) with lists of different lengths." define : bench-append param-list zip param-list map lambda (x) let : (N (list-ref x 0)) (m (list-ref x 1)) benchmark (append a b) :let ((a (iota N))(b (iota m))) . param-list let : (steps 30) concatenate list let : (param-list (zip (iota steps 1 1000) (iota steps 1 0))) bench-append param-list let : (param-list (zip (iota steps 1 0) (iota steps 1 1000))) bench-append param-list let : (param-list (zip (iota steps 1 1000) (iota steps 1 0))) bench-append param-list let : (param-list (zip (iota steps 1 0) (iota steps 1 1000))) bench-append param-list let : (param-list (zip (iota steps 1 1000) (iota steps 100000 0))) bench-append param-list let : (param-list (zip (iota steps 100000 0) (iota steps 1 1000))) bench-append param-list ;; stddev from rosetta code: http://rosettacode.org/wiki/Standard_deviation#Scheme define : stddev nums sqrt - / : apply + : map (lambda (i) (* i i)) nums length nums expt (/ (apply + nums) (length nums)) 2 define : running-stddev nums define : running-stddev-2 num set! nums : cons num nums stddev nums . running-stddev-2 ;; prepare a multi-function fit import only : examples ensemble-estimation . EnSRF make-covariance-matrix-with-offdiagonals-using-stds . standard-deviation-from-deviations x-deviations->y-deviations . x^steps only : ice-9 popen . open-output-pipe close-pipe define : H x pos . "Observation operator. It generates modelled observations from the input. x are parameters to be optimized, pos is another input which is not optimized. For plain functions it could be the position of the measurement on the x-axis. We currently assume absolute knowledge about the position. " let : (N (first pos)) (m (second pos)) + list-ref x 0 ; constant value ;; pure N * (list-ref x 1) : log : + 1 N ; avoid breakage at pos 0 ; * (list-ref x 2) : sqrt N * (list-ref x 3) N ; * (list-ref x 4) : expt N 2 ; * (list-ref x 5) : expt N 3 ;; pure m * (list-ref x 6) : log : + 1 m ; avoid breakage at pos 0 ; * (list-ref x 7) : sqrt m * (list-ref x 8) m ; * (list-ref x 9) : expt m 2 ; * (list-ref x 10) : expt m 3 ;; mixed terms * (list-ref x 11) : log : + 1 N m * (list-ref x 12) : * N (log (+ 1 m)) * (list-ref x 13) : * m (log (+ 1 N)) ; * (list-ref x 14) : * N m ; * (list-ref x 15) : * (expt N 2) m ; * (list-ref x 16) : * (expt m 2) N define : interleave lx lz cond (null? lx) lz else cons : car lx interleave lz : cdr lx define : print-fit x σ let : : msg " ~,1,,,,,'ee±~,1,,,,,'ee + ~,1,,,,,'ee±~,1,,,,,'ee log(N) + ~,1,,,,,'ee±~,1,,,,,'ee sqrt(N) + ~,1,,,,,'ee±~,1,,,,,'ee N + ~,1,,,,,'ee±~,1,,,,,'ee N^2 + ~,1,,,,,'ee±~,1,,,,,'ee N^3 + ~,1,,,,,'ee±~,1,,,,,'ee log(m) + ~,1,,,,,'ee±~,1,,,,,'ee sqrt(m) + ~,1,,,,,'ee±~,1,,,,,'ee m + ~,1,,,,,'ee±~,1,,,,,'ee m^2 + ~,1,,,,,'ee±~,1,,,,,'ee m^3 + ~,1,,,,,'ee±~,1,,,,,'ee log(N + m) + ~,1,,,,,'ee±~,1,,,,,'ee N log(m) + ~,1,,,,,'ee±~,1,,,,,'ee m log(N)+ ~,1,,,,,'ee±~,1,,,,,'ee N m + ~,1,,,,,'ee±~,1,,,,,'ee N^2 m + ~,1,,,,,'ee±~,1,,,,,'ee m^2 N " apply format append (list #t msg) (interleave x σ) define : flatten li append-ec (: i li) i define : main args ;; map ;; lambda : mismatch-fun ;; write (procedure-name mismatch-fun) ;; newline ;; let : (mis (mismatch-fun (benchmark-list-append))) ;; map : lambda (x) : pretty-print (stddev x) ;; apply zip mis ;; list mismatch-to-const-N-m mismatch-to-linear-N-m let* : bench : benchmark-list-append ;; benchmark results ; fitting to cost estimates ensemble-member-count 32 ensemble-member-plot-skip 4 x^b : list-ec (: i 17) (car (cdr (car bench))) ; inital guess: constant starting at the first result x^b-std : list-ec (: i 17) (car (cdr (car bench))) ; inital guess: 100% uncertainty P : make-covariance-matrix-with-offdiagonals-using-stds x^b-std y⁰-pos : map car bench y⁰ : append-map cdr bench y⁰-std : stddev y⁰ R : make-covariance-matrix-with-offdiagonals-using-stds : list-ec (: i (length bench)) y⁰-std optimized : EnSRF H x^b P y⁰ R y⁰-pos ensemble-member-count x-opt : list-ref optimized 0 x-deviations : list-ref optimized 1 x-std list-ec (: i (length x-opt)) apply standard-deviation-from-deviations : list-ec (: j x-deviations) : list-ref j i y-deviations : x-deviations->y-deviations H x-opt x-deviations y⁰-pos y-stds : list-ec (: i y-deviations) : apply standard-deviation-from-deviations i y-opt : map (λ (x) (H x-opt x)) y⁰-pos x^b-deviations-approx list-ec (: i ensemble-member-count) list-ec (: j (length x^b)) * : random:normal sqrt : list-ref (list-ref P j) j ; only for diagonal P! y^b-deviations : x-deviations->y-deviations H x^b x^b-deviations-approx y⁰-pos y-std apply standard-deviation-from-deviations flatten y-deviations y-stds : list-ec (: i y-deviations) : apply standard-deviation-from-deviations i y^b-stds : list-ec (: i y^b-deviations) : apply standard-deviation-from-deviations i ;; print-fit x-std print-fit x-opt x-std ; now plot the result let : : port : open-output-pipe "python2" format port "import pylab as pl\nimport matplotlib as mpl\n" format port "y0 = [float(i) for i in '~A'[1:-1].split(' ')]\n" y⁰ format port "yerr = ~A\n" y⁰-std format port "ypos1 = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : first i format port "ypos2 = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : second i format port "yinit = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x^b i format port "yinitstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y^b-stds format port "yopt = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x-opt i format port "yoptstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y-stds format port "pl.errorbar(*zip(*sorted(zip(ypos1, yinit))), yerr=zip(*sorted(zip(ypos1, yinitstds)))[1], label='prior vs N')\n" format port "pl.errorbar(*zip(*sorted(zip(ypos1, yopt))), yerr=zip(*sorted(zip(ypos1, yoptstds)))[1], label='optimized vs N')\n" format port "eb=pl.errorbar(*zip(*sorted(zip(ypos1, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs N')\neb[-1][0].set_linewidth(1)\n" format port "pl.errorbar(*zip(*sorted(zip(ypos2, yinit))), yerr=zip(*sorted(zip(ypos2, yinitstds)))[1], label='prior vs. m')\n" format port "pl.errorbar(*zip(*sorted(zip(ypos2, yopt))), yerr=zip(*sorted(zip(ypos2, yoptstds)))[1], label='optimized vs. m')\n" format port "eb=pl.errorbar(*zip(*sorted(zip(ypos2, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs. m')\neb[-1][0].set_linewidth(1)\n" list-ec (: step 0 (length x^steps) 16) let : : members : list-ref x^steps (- (length x^steps) step 1) list-ec (: member-idx 0 (length members) ensemble-member-plot-skip) ; reversed let : : member : list-ref members member-idx format port "paired = pl.get_cmap('Paired') cNorm = mpl.colors.Normalize(vmin=~A, vmax=~A) scalarMap = mpl.cm.ScalarMappable(norm=cNorm, cmap=paired)\n" 0 (length member) list-ec (: param-idx 0 (length member) 16) ; step = 16 ; plot parameter 0 format port "pl.plot(~A, ~A, marker='.', color=scalarMap.to_rgba(~A), linewidth=0, label='', alpha=0.6, zorder=-1)\n" (/ step 1) (+ 80 (* (/ (apply + y-opt) (length y-opt)) (list-ref member param-idx))) param-idx format port "pl.legend(loc='upper right')\n" format port "pl.xlabel('position [arbitrary units]')\n" format port "pl.ylabel('value [arbitrary units]')\n" format port "pl.title('ensemble optimization results')\n" format port "pl.xscale('log')\n" format port "pl.yscale('log')\n" format port "pl.show()\n" format port "exit()\n" close-pipe port