#!/usr/bin/env sh # -*- wisp -*- exec guile -L $(dirname $(dirname $(realpath "$0"))) --language=wisp -e '(@@ (examples ensemble-estimation) main)' -s "$0" "$@" ; !# ;; Simple Ensemble Square Root Filter to estimate function parameters ;; based on measurements. ;; Provide first guess parameters x^b and measurements y⁰ to get ;; optimized parameters x^a. ;; Method ;; x^b = '(…) ; first guess of the parameters ;; P = '((…) (…) …) ; parameter covariance ;; y⁰ = '(…) ; observations ;; R = '((…) (…) …) ; observation covariance ;; H: H(x) → y ; provide modelled observations for the given parameters. Just run the function. ;; with N ensemble members (i=1, … N) drawn from the state x^b: ;; For each measurement y⁰_j: ;; x'^b: X = 1/√(N-1)(x'b_1, …, x'b_N)^T ;; with P = XX^T ; in the simplest case x'^b are gaussian ;; distributed with standard distribution from ;; square root of the diagonals. ;; x_i = x^b + x'^b_i ;; H(x^b_i) = H(x^b + x'^b_i) ;; H(x^b) = (1/N)·Σ H(x^b + x'^b_i) ;; H(x'^b_i) = H(x^b + x'_i) - H(x^b) ;; HPHt = 1/(N-1)(H(x'_1), …, H(x'_N))(H(x'1), …, H(x'N))T ;; PHt = 1/(N-1)(x'_1, …, x'_N)(H(x'1), …, H(x'N))T ;; K = PHt*(HPHt + R)⁻¹ ;; x^a = x^b + K(y⁰_j - H(x^b)) ;; α = (1 + √(R/(HPHt+R)))⁻¹ ;; x'^a = x'^b - αK·H(x'^b) define-module : examples ensemble-estimation use-modules : srfi srfi-42 ; list-ec use-modules : ice-9 popen . #:select : open-output-pipe close-pipe ; seed the random number generator set! *random-state* : random-state-from-platform define : make-diagonal-matrix-with-trace trace let : : dim : length trace list-ec (: i dim) list-ec (: j dim) if : = i j list-ref trace i . 0.0 define : make-covariance-matrix-from-standard-deviations stds make-diagonal-matrix-with-trace : map (lambda (x) (expt x 2)) stds define : mean l . "Calculate the average value of l (numbers)." / : apply + l length l define : standard-deviation l . "Calculate the standard deviation of list l (numbers)." let : : l_mean : mean l sqrt / : sum-ec (: i l) : expt {i - l_mean} 2 . {(length l) - 1} define : standard-deviation-from-deviations . l . "Calculate the standard deviation from a list of deviations (x - x_mean)." sqrt / : sum-ec (: i l) : expt i 2 . {(length l) - 1} define* : write-multiple . x . "Helper to avoid suffering from write-newline-typing." map : lambda (x) (write x) (newline) . x ;; Start with the simple case: One variable and independent observations (R diagonal) ;; First define a truth define x^seed '(0.5 0.6 2 0.1) ; 0.7 0.9 0.8 0.4) ;; The size is the length of the seed, squared, each multiplied by each define x^true : append-ec (: i (length x^seed)) : list-ec (: j x^seed) : * j : list-ref x^seed i ;; And add an initial guess of the parameters define x^b : append-ec (: i (length x^seed)) '(1 1 1 1) ; 1 1 1 1) ; initial guess define P : make-covariance-matrix-from-standard-deviations : append-ec (: i (length x^seed)) '(0.5 0.1 0.3 0.1) ; 0.2 0.2 0.2 0.2) ;; Then generate observations define y⁰-num 1000 define y⁰-pos-max 100 ;; At the positions where they are measured. Drawn randomly to avoid ;; giving an undue weight to later values. define y⁰-pos : list-ec (: i y⁰-num) : * (random:uniform) y⁰-pos-max define : H-single-parameter xi xi-pos pos . "Observation function for a single parameter." let* : xi-posdist : abs : / {pos - xi-pos} {y⁰-pos-max / 20} cond : < 5 xi-posdist . 0 else * xi pos exp : - : expt xi-posdist 2 ;; We need an observation operator to generate observations from true values define : H x pos . "Observation operator. It generates modelled observations from the input. x are parameters to be optimized, pos is another input which is not optimized. For plain functions it could be the position of the measurement on the x-axis. We currently assume absolute knowledge about the position. " let* : len : length x ystretch y⁰-pos-max x-pos : list-ec (: i len) : * ystretch {{i + 0.5} / {len + 1}} apply + list-ec (: i len) H-single-parameter list-ref x i list-ref x-pos i . pos ;; We start with true observations which we will disturb later to get ;; the equivalent of measured observations define y^true : list-ec (: i y⁰-pos) : H x^true i ;; now we disturb the observations with a fixed standard deviation. This assumes uncorrelated observations. define y⁰-std 10 define y⁰ : list-ec (: i y^true) : + i : * y⁰-std : random:normal ;; and define the covariance matrix. This assumes uncorrelated observations. define R : make-covariance-matrix-from-standard-deviations : list-ec (: i y⁰-num) y⁰-std ;; Alternative: define observations ;; define y⁰-mean 0.8 ;; The actual observations ;; define y⁰ : list-ec (: i y⁰-num) : + y⁰-mean : * y⁰-std : random:normal define : EnSRT H x P y R y-pos N . "Observation function H, parameters x, parameter-covariance P, observations y, observation covariance R and number of ensemble members N. Limitations: y is a single value. R and P are diagonal. " let step : observations-to-process y observation-variances : list-ec (: i (length y)) : list-ref (list-ref R i) i observation-positions y-pos x^b x x-deviations list-ec (: i N) list-ec (: j (length x)) * : random:normal sqrt : list-ref (list-ref P j) j ; only for diagonal P! cond : null? observations-to-process list x^b x-deviations else ; write : list x^b '± : sqrt : * {1 / {(length x-deviations) - 1}} : sum-ec (: i x-deviations) : expt i 2 ; newline let* : y_cur : car observations-to-process R_cur : car observation-variances y-pos_cur : car observation-positions Hx^b_i list-ec (: i x-deviations) H list-ec (: j (length i)) + (list-ref x^b j) (list-ref i j) . y-pos_cur Hx^b / : sum-ec (: i Hx^b_i) i . N Hx^b-prime list-ec (: i N) - : list-ref Hx^b_i i . Hx^b HPHt / : sum-ec (: i Hx^b-prime) {i * i} . {N - 1} PHt list-ec (: j (length x^b)) ; for each x^b_i multiply the state-element and model-deviation for all ensemble members. * {1 / {N - 1}} sum-ec (: i N) * : list-ref (list-ref x-deviations i) j ; FIXME: this currently does not use j because I only do length 1 x list-ref Hx^b-prime i K : list-ec (: i PHt) {i / {HPHt + R_cur}} x^a list-ec (: j (length x^b)) + : list-ref x^b j * : list-ref K j . {y_cur - Hx^b} α-weight-sqrt : sqrt {R_cur / {HPHt + R_cur}} α {1 / {1 + α-weight-sqrt}} x^a-deviations list-ec (: i N) ; for each ensemble member list-ec (: j (length x^b)) ; and each state variable - : list-ref (list-ref x-deviations i) j * α list-ref K j list-ref Hx^b-prime i step cdr observations-to-process cdr observation-variances cdr observation-positions . x^a . x^a-deviations define : main args let* : optimized : EnSRT H x^b P y⁰ R y⁰-pos 40 x-opt : list-ref optimized 0 x-deviations : list-ref optimized 1 ; std : sqrt : * {1 / {(length x-deviations) - 1}} : sum-ec (: i x-deviations) : expt i 2 format #t "x⁰: ~A ± ~A\nx: ~A ± ~A\nx^t: ~A\nx-t/σ:~A\ny̅: ~A ± ~A\ny̅⁰: ~A ± ~A\ny̅^t: ~A\nnoise:~A\n" . x^b list-ec (: i (length x^b)) : list-ref (list-ref P i) i . x-opt list-ec (: i (length x-opt)) apply standard-deviation-from-deviations : list-ec (: j x-deviations) : list-ref j i . x^true list-ec (: i (length x-opt)) / : - (list-ref x-opt i) (list-ref x^true i) apply standard-deviation-from-deviations : list-ec (: j x-deviations) : list-ref j i * {1 / (length y⁰)} : apply + : map (lambda (x) (H x-opt x)) y⁰-pos apply standard-deviation-from-deviations append-ec (: i (length x-deviations)) let* : x-opt+dev list-ec (: j (length x-opt)) + : list-ref x-opt j list-ref list-ref x-deviations i . j y-opt+dev : map (lambda (x) (H x-opt+dev x)) y⁰-pos y-opt : map (lambda (x) (H x-opt x)) y⁰-pos map (lambda (x y) (- x y)) y-opt+dev y-opt ; list-ec (: i (length y-opt)) ; - (list-ref y-opt+dev i) (list-ref y-opt i) ; apply standard-deviation-from-deviations : map H x-deviations ; FIXME: This only works for trivial H. mean y⁰ standard-deviation y⁰ * {1 / (length y⁰)} : apply + : map (lambda (x) (H x^true x)) y⁰-pos . y⁰-std ; now plot the result let : : port : open-output-pipe "python" format port "import pylab as pl\n" format port "y0 = [float(i) for i in '~A'[1:-1].split(' ')]\n" y⁰ format port "ypos = [float(i) for i in '~A'[1:-1].split(' ')]\n" y⁰-pos format port "yinit = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x^b i format port "ytrue = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x^true i format port "yopt = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x-opt i format port "pl.plot(*zip(*sorted(zip(ypos, yinit))), label='prior')\n" format port "pl.plot(*zip(*sorted(zip(ypos, ytrue))), label='true')\n" format port "pl.plot(*zip(*sorted(zip(ypos, yopt))), label='optimized')\n" format port "pl.plot(*zip(*sorted(zip(ypos, y0))), marker='+', linewidth=0, label='measurements')\n" format port "pl.legend()\n" format port "pl.xlabel('position [arbitrary units]')\n" format port "pl.ylabel('value [arbitrary units]')\n" format port "pl.title('ensemble optimization results')\n" format port "pl.show()\n" format port "exit()\n" close-pipe port