#!/usr/bin/env sh exec guile -L ~/wisp --language=wisp "$0" "$@" ; !# ;; Simple Ensemble Square Root Filter to estimate function parameters ;; based on measurements. ;; Provide first guess parameters x^b and measurements y⁰ to get ;; optimized parameters x^a. ;; Method ;; x^b = '(…) ; first guess of the parameters ;; P = '((…) (…) …) ; parameter covariance ;; y⁰ = '(…) ; observations ;; R = '((…) (…) …) ; observation covariance ;; H: H(x) → y ; provide modelled observations for the given parameters. Just run the function. ;; with N ensemble members (i=1, … N) drawn from the state x^b: ;; For each measurement y⁰_j: ;; x'^b: X = 1/√(N-1)(x'b_1, …, x'b_N)^T ;; with P = XX^T ; in the simplest case x'^b are gaussian ;; distributed with standard distribution from ;; square root of the diagonals. ;; x_i = x^b + x'^b_i ;; H(x^b_i) = H(x^b + x'^b_i) ;; H(x^b) = (1/N)·Σ H(x^b + x'^b_i) ;; H(x'^b_i) = H(x^b + x'_i) - H(x^b) ;; HPHt = 1/(N-1)(H(x'_1), …, H(x'_N))(H(x'1), …, H(x'N))T ;; PHt = 1/(N-1)(x'_1, …, x'_N)(H(x'1), …, H(x'N))T ;; K = PHt*(HPHt + R)⁻¹ ;; x^a = x^b + K(y⁰_j - H(x^b)) ;; α = (1 + √(R/(HPHt+R)))⁻¹ ;; x'^a = x'^b - αK·H(x'^b) use-modules : srfi srfi-42 ; list-ec ; seed the random number generator ; set! *random-state* : random-state-from-platform ;; Start with the simple case: One variable and independent observations (R diagonal) define x^b '(1) ; initial guess define P '((0.25)) ; standard deviation 0.5 define y⁰ '(0.8 0.7 0.9 0.75) ; real value: 0.8 define R '((0.1 0 0 0) ; standard deviation √0.1 (0 0.1 0 0) (0 0 0.1 0) (0 0 0 0.1)) define : H-single x . "Simple single state observation operator which just returns the state." . x define* : write-multiple . x map : lambda (x) (write x) (newline) . x define : EnSRT-single-state H x P y R N . "Observation function H, parameters x, parameter-covariance P, observations y, observation covariance R and number of ensemble members N. Limitations: x is a single value, P is a single value (variance of x). " let process-observation : observations-to-process y observation-variances : list-ec (: i (length y)) : list-ref (list-ref R i) i x^b : list-ref x 0 x-deviations : list-ec (: i N) : * (random:normal) : sqrt : list-ref (list-ref P 0) 0; only for single x'^b cond : null? observations-to-process list x^b x-deviations else write : list x^b : list-ec (: i x-deviations) {x^b + i} newline let* : y_cur : car observations-to-process R_cur : car observation-variances Hx^b_i : list-ec (: i x-deviations) : H {x^b + i} ; this only works for single value x! Hx^b / : sum-ec (: i Hx^b_i) i . N Hx^b-prime list-ec (: i N) - : list-ref Hx^b_i i . Hx^b HPHt / : sum-ec (: i Hx^b-prime) {i * i} . {N - 1} PHt list-ec (: j (length x)) ; for each x^b_i multiply the state-element and model-deviation for all ensemble members. This is not used at the moment. * {1 / {N - 1}} sum-ec (: i N) * : list-ref x-deviations i ; FIXME: this currently does not use j because I only do length 1 x list-ref Hx^b-prime i K : list-ec (: i PHt) {1 / {HPHt + R_cur}} a : write-multiple "XXX" Hx^b-prime PHt HPHt x^a list-ec (: i (length K)) + x^b * : list-ref K i . {y_cur - Hx^b} α-weight-sqrt : sqrt {R_cur / {HPHt + R_cur}} α {1 / {1 + α-weight-sqrt}} x^a-deviations list-ec (: i N) - : list-ref x-deviations i * α list-ref K 0 list-ref Hx^b-prime i process-observation cdr observations-to-process cdr observation-variances list-ref x^a 0 . x^a-deviations write : EnSRT-single-state H-single x^b P y⁰ R 4 newline