#!/usr/bin/env sh # -*- wisp -*- exec guile -L $(dirname $(dirname $(realpath "$0"))) --language=wisp -e '(@@ (examples benchmark) main)' -l $(dirname $(realpath "$0"))/cholesky.w -l $(dirname $(realpath "$0"))/ensemble-estimation.w -s "$0" "$@" ; !# define-module : examples benchmark import : statprof ice-9 optargs ice-9 format srfi srfi-1 srfi srfi-42 ; list-ec ice-9 pretty-print system vm program ;; stddev from rosetta code: http://rosettacode.org/wiki/Standard_deviation#Scheme define : stddev nums sqrt - / : apply + : map (lambda (i) (* i i)) nums length nums expt (/ (apply + nums) (length nums)) 2 define : stddev-unbiased-normal nums . "Approximated unbiased standard deviation for the normal distribution 'for n = 3 the bias is equal to 1.3%, and for n = 9 the bias is already less than 0.1%.' - https://en.wikipedia.org/wiki/Standard_deviation#Unbiased_sample_standard_deviation " sqrt - / : apply + : map (lambda (i) (* i i)) nums - (length nums) 1.5 expt (/ (apply + nums) (length nums)) 2 define : running-stddev nums define : running-stddev-2 num set! nums : cons num nums stddev nums . running-stddev-2 define* : benchmark-run-single fun #:key (min-seconds 0.1) let profiler : (loop-num 4) ;; trigger garbage collection before stats collection to avoid polluting the data gc let : : t : get-internal-real-time with-output-to-string lambda () let lp : (i loop-num) : λ () : fun when (> i 0) lp (- i 1) let* : dt : - (get-internal-real-time) t seconds : / (exact->inexact dt) internal-time-units-per-second ;; pretty-print : list dt seconds loop-num if {seconds > min-seconds} / seconds loop-num ;; this wastes less than {(4 * ((4^(i-1)) - 1)) / 4^i} fractional data but gains big in simplicity profiler (* 4 loop-num) ;; for fast functions I need to go up rapidly, for slow ones I need to avoid overshooting define* : benchmark-run fun #:key (max-relative-uncertainty 0.2) pretty-print fun let lp : (min-seconds 1.e-5) (sampling-steps 4) ;; min seconds: 10μs ~ 30k cycles, start with at least 3 sampling steps to make the approximations in stddev-unbiased-normal good enough let* : res : list-ec (: i sampling-steps) : benchmark-run-single fun #:min-seconds min-seconds std : stddev-unbiased-normal res mean : / (apply + res) (length res) pretty-print : list mean '± std min-seconds sampling-steps if : < std {mean * max-relative-uncertainty} . mean lp (* 2 min-seconds) (* 2 sampling-steps) ;; should decrease σ by factor 2 or √2 (for slow functions) define loopcost benchmark-run (λ() #f) ;; TODO: Simplify #:key setup -> . setup define* : benchmark-fun fun #:key setup when setup setup - : benchmark-run fun . loopcost define-syntax benchmark ;; one single benchmark lambda : x syntax-case x (:let :setup) : _ thunk :setup setup-thunk :let let-thunk args ... #' benchmark thunk :let let-thunk :setup setup-thunk args ... : _ thunk :let let-thunk :setup setup-thunk args ... #' benchmark thunk :let let-thunk #:setup (lambda () setup-thunk) args ... : _ thunk :setup setup-thunk args ... #' benchmark thunk #:setup (lambda () setup-thunk) args ... : _ thunk :let let-thunk args ... #' let let-thunk benchmark thunk args ... : _ thunk args ... #' benchmark-fun . (lambda () thunk) args ... define : logiota steps start stepsize . "Create numbers evenly spread in log space" let* : logstart : log (+ start 1) logstep : / (- (log (+ start (* stepsize (- steps 1)))) logstart) (- steps 1) map inexact->exact : map round : map exp : iota steps logstart logstep define : benchmark-list-append . "Test (append a b) with lists of different lengths." define : bench-append param-list zip param-list map lambda (x) let : (N (list-ref x 0)) (m (list-ref x 1)) benchmark (append a b) :let ((a (iota N))(b (iota m))) . param-list let : (steps 10) concatenate list let : (param-list (zip (logiota steps 1 10000) (logiota steps 1 0))) bench-append param-list ;; let : (param-list (zip (logiota steps 20 0) (logiota steps 1 10000))) ;; bench-append param-list ;; let : (param-list (zip (logiota steps 1 1000) (logiota steps 1 0))) ;; bench-append param-list ;; let : (param-list (zip (logiota steps 1 0) (logiota steps 1 1000))) ;; bench-append param-list ;; let : (param-list (zip (logiota steps 1 1000) (logiota steps 100000 0))) ;; bench-append param-list ;; let : (param-list (zip (logiota steps 100000 0) (logiota steps 1 1000))) ;; bench-append param-list ;; prepare a multi-function fit import only : examples ensemble-estimation . EnSRF make-covariance-matrix-with-offdiagonals-using-stds . standard-deviation-from-deviations x-deviations->y-deviations . x^steps only : ice-9 popen . open-output-pipe close-pipe define-syntax-rule : or0 test c ... if test : begin c ... . 0 define-syntax-rule : define-quoted sym val ;; set the value to true using eval to break the symbol->variable barrier primitive-eval `(define ,sym val) define* H-N-m x pos #:key all const OlogN OsqrtN ON ONlogN ON² . Ologm Osqrtm Om Omlogm Om² . OlogNm ONlogm OmlogN ONm . ON²m Om²N OsinN/N Osinm/m . "Observation operator. It generates modelled observations from the input. x are parameters to be optimized, pos is another input which is not optimized. For plain functions it could be the position of the measurement on the x-axis. We currently assume absolute knowledge about the position. " when all let lp : (l '(const OlogN OsqrtN ON ONlogN ON² Ologm Osqrtm Om Omlogm Om² OlogNm ONlogm OmlogN ONm ON²m Om²N OsinN/N Osinm/m)) when : not : null? l define-quoted (car l) #t lp : cdr l let : (N (first pos)) (m (second pos)) + or0 const : list-ref x 0 ; constant value ;; pure N or0 OlogN : * (list-ref x 1) : log (+ 1 N) ; avoid breakage at pos 0 or0 OsqrtN : * (list-ref x 2) : sqrt N or0 ON : * (list-ref x 3) N or0 ONlogN : * (list-ref x 4) : * N : log (+ 1 N) or0 ON² : * (list-ref x 5) : expt N 2 ;; pure m or0 Ologm : * (list-ref x 6) : log (+ 1 m) ; avoid breakage at pos 0 or0 Osqrtm : * (list-ref x 7) : sqrt m or0 Om : * (list-ref x 8) m or0 Omlogm : * (list-ref x 9) : * m : log (+ 1 m) or0 Om² : * (list-ref x 10) : expt m 2 ;; mixed terms or0 OlogNm : * (list-ref x 11) : log (+ 1 N m) or0 ONlogm : * (list-ref x 12) : * N : log (+ 1 m) or0 OmlogN : * (list-ref x 13) : * m : log (+ 1 N) or0 ONm : * (list-ref x 14) : * N m or0 ON²m : * (list-ref x 15) : * (expt N 2) m or0 Om²N : * (list-ref x 16) : * (expt m 2) N or0 OsinN/N : * (list-ref x 17) : / (sin (/ (- N (list-ref x 18)) (list-ref x 19))) N ; sin(x)/x or0 Osinm/m : * (list-ref x 20) : / (sin (/ (- m (list-ref x 21)) (list-ref x 22))) m ; sin(x)/x define : interleave lx lz cond (null? lx) lz else cons : car lx interleave lz : cdr lx define : print-fit x σ . "Print the big-O parameters which are larger than σ (their standard deviation)." let : : number-format "~,1,,,,,'ee±~,1,,,,,'ee" let big-O : names : list "" "log(N)" "sqrt(N)" "N log(N)" "N^2" "log(m)" "sqrt(m)" "m" "m log(m)" "m^2" "log(N + m)" "N log(m)" "m log(N)" "N m" "N^2 m" "m^2 N" "sin((N-x)/p)/N" "sin((N-x*)/p)/N" "sin((N-x)/p*)/N" "sin((m-x)/p)/m" "sin((m-x*)/p)/m" "sin((m-x)/p*)/m" x x σ σ cond : or (null? names) (null? x) (null? σ) newline : > (abs (car x)) (car σ) format #t : string-append number-format " " (car names) " " . (car x) (car σ) big-O (cdr names) (cdr x) (cdr σ) else big-O (cdr names) (cdr x) (cdr σ) define : flatten li append-ec (: i li) i ;; TODO: add filename and title and fix the units define* : plot-benchmark-result bench H let* : ensemble-member-count 256 ensemble-member-plot-skip 4 y_0 : apply min : map car : map cdr bench y_m : apply max : map car : map cdr bench nb : apply max : interleave (map car (map car bench)) (map car (map cdr (map car bench))) ;; "const" "log(N)" "sqrt(N)" "N" "N^2" "N^3" "log(m)" "sqrt(m)" "m" "m^2" "m^3" "log(N + m)" "N log(m)" "m log(N)" "N m" "N^2 m" "m^2 N" x^b : list y_0 (/ y_m (log nb)) (/ y_m (sqrt nb)) (/ y_m nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m (log nb)) (/ y_m (sqrt nb)) (/ y_m nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m nb nb) (/ y_m nb nb) (/ y_m nb nb nb) (/ y_m nb nb nb) (/ y_m nb nb nb nb) (/ y_m nb nb nb nb) y_0 (/ nb 100) 10000 y_0 (/ nb 100) 10000 ; inital guess: constant starting at the first result x^b-std : list-ec (: i x^b) i ; inital guess: 100% uncertainty P : make-covariance-matrix-with-offdiagonals-using-stds x^b-std y⁰-pos : map car bench y⁰ : append-map cdr bench y⁰-stds : list-ec (: i y⁰) {i * 0.2} ; enforcing 20% max std in benchmark-run y⁰-std : list-ref (sort y⁰ <) : round : / (length y⁰) 8 ; lower octile median R : make-covariance-matrix-with-offdiagonals-using-stds y⁰-stds optimized : EnSRF H x^b P y⁰ R y⁰-pos ensemble-member-count x-opt : list-ref optimized 0 x-deviations : list-ref optimized 1 x-std list-ec (: i (length x-opt)) apply standard-deviation-from-deviations : list-ec (: j x-deviations) : list-ref j i y-deviations : x-deviations->y-deviations H x-opt x-deviations y⁰-pos y-stds : list-ec (: i y-deviations) : apply standard-deviation-from-deviations i y-opt : map (λ (x) (H x-opt x)) y⁰-pos x^b-deviations-approx list-ec (: i ensemble-member-count) list-ec (: j (length x^b)) * : random:normal sqrt : list-ref (list-ref P j) j ; only for diagonal P! y^b-deviations : x-deviations->y-deviations H x^b x^b-deviations-approx y⁰-pos y-std apply standard-deviation-from-deviations flatten y-deviations y-stds : list-ec (: i y-deviations) : apply standard-deviation-from-deviations i y^b-stds : list-ec (: i y^b-deviations) : apply standard-deviation-from-deviations i ;; print-fit x-std print-fit x-opt x-std ;; TODO: minimize y-mismatch * y-uncertainty format #t "Model standard deviation (uncertainty): ~,4e\n" y-std ; now plot the result let : : port : open-output-pipe "python2" format port "import pylab as pl\nimport matplotlib as mpl\n" format port "y0 = [float(i) for i in '~A'[1:-1].split(' ')]\n" y⁰ format port "yerr = ~A\n" y⁰-std format port "ypos1 = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : first i format port "ypos2 = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : second i format port "yinit = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x^b i format port "yinitstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y^b-stds format port "yopt = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x-opt i format port "yoptstds = [float(i) for i in '~A'[1:-1].split(' ')]\n" y-stds ;; format port "pl.errorbar(*zip(*sorted(zip(ypos1, yinit))), yerr=zip(*sorted(zip(ypos1, yinitstds)))[1], label='prior vs N')\n" format port "pl.errorbar(*zip(*sorted(zip(ypos1, yopt))), yerr=zip(*sorted(zip(ypos1, yoptstds)))[1], marker='H', mew=0, ms=10, linewidth=0.1, label='optimized vs N')\n" format port "eb=pl.errorbar(*zip(*sorted(zip(ypos1, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs N')\neb[-1][0].set_linewidth(1)\n" ;; format port "pl.errorbar(*zip(*sorted(zip(ypos2, yinit))), yerr=zip(*sorted(zip(ypos2, yinitstds)))[1], label='prior vs. m')\n" format port "pl.errorbar(*zip(*sorted(zip(ypos2, yopt))), yerr=zip(*sorted(zip(ypos2, yoptstds)))[1], marker='h', mew=0, ms=10, linewidth=0.1, label='optimized vs. m')\n" format port "eb=pl.errorbar(*zip(*sorted(zip(ypos2, y0))), yerr=yerr, alpha=0.6, marker='x', mew=2, ms=10, linewidth=0, label='measurements vs. m')\neb[-1][0].set_linewidth(1)\n" format port "pl.plot(sorted(ypos1+ypos2), pl.log(sorted(ypos1+ypos2))*(max(y0) / pl.log(max(ypos1+ypos2))), label='log(x)')\n" format port "pl.plot(sorted(ypos1+ypos2), pl.sqrt(sorted(ypos1+ypos2))*(max(y0) / pl.sqrt(max(ypos1+ypos2))), label='sqrt(x)')\n" format port "pl.plot(sorted(ypos1+ypos2), pl.multiply(sorted(ypos1+ypos2), max(y0) / max(ypos1+ypos2)), label='x')\n" list-ec (: step 0 (length x^steps) 4) let : : members : list-ref x^steps (- (length x^steps) step 1) list-ec (: member-idx 0 (length members) ensemble-member-plot-skip) ; reversed let : : member : list-ref members member-idx format port "paired = pl.get_cmap('Paired') cNorm = mpl.colors.Normalize(vmin=~A, vmax=~A) scalarMap = mpl.cm.ScalarMappable(norm=cNorm, cmap=paired)\n" 0 (length member) list-ec (: param-idx 0 (length member) 4) ; step = 4 ;; plot parameter 0 let : (offset (/ (apply max (append y⁰ y-opt)) 2)) (spreading (/ (apply max (append y⁰ y-opt)) (- (apply max member) (apply min member)))) format port "pl.plot(~A, ~A, marker='.', color=scalarMap.to_rgba(~A), linewidth=0, label='', alpha=0.6, zorder=-1)\n" . (/ step 1) (+ offset (* spreading (list-ref member param-idx))) param-idx format port "pl.legend(loc='upper left')\n" format port "pl.xlabel('position [arbitrary units]')\n" format port "pl.ylabel('value [arbitrary units]')\n" format port "pl.title('~A')\n" "Operation scaling behaviour" format port "pl.xscale('log')\n" ;; format port "pl.yscale('log')\n" format port "pl.show()\n" format port "exit()\n" close-pipe port define : main args let* : bench : benchmark-list-append ;; benchmark results H : lambda (x pos) (H-N-m x pos #:const #t #:ON #t #:ONlogN #t) plot-benchmark-result bench H