#!/usr/bin/env sh
exec guile -L ~/wisp --language=wisp -e '(@@ (examples ensemble-estimation) main)' -s "$0" "$@"
; !#
;; Simple Ensemble Square Root Filter to estimate function parameters
;; based on measurements.
;; Provide first guess parameters x^b and measurements y⁰ to get
;; optimized parameters x^a.
;; Method
;; x^b = '(…) ; first guess of the parameters
;; P = '((…) (…) …) ; parameter covariance
;; y⁰ = '(…) ; observations
;; R = '((…) (…) …) ; observation covariance
;; H: H(x) → y ; provide modelled observations for the given parameters. Just run the function.
;; with N ensemble members (i=1, … N) drawn from the state x^b:
;; For each measurement y⁰_j:
;; x'^b: X = 1/√(N-1)(x'b_1, …, x'b_N)^T
;; with P = XX^T ; in the simplest case x'^b are gaussian
;; distributed with standard distribution from
;; square root of the diagonals.
;; x_i = x^b + x'^b_i
;; H(x^b_i) = H(x^b + x'^b_i)
;; H(x^b) = (1/N)·Σ H(x^b + x'^b_i)
;; H(x'^b_i) = H(x^b + x'_i) - H(x^b)
;; HPHt = 1/(N-1)(H(x'_1), …, H(x'_N))(H(x'1), …, H(x'N))T
;; PHt = 1/(N-1)(x'_1, …, x'_N)(H(x'1), …, H(x'N))T
;; K = PHt*(HPHt + R)⁻¹
;; x^a = x^b + K(y⁰_j - H(x^b))
;; α = (1 + √(R/(HPHt+R)))⁻¹
;; x'^a = x'^b - αK·H(x'^b)
define-module : examples ensemble-estimation
use-modules : srfi srfi-42 ; list-ec
use-modules
: ice-9 popen
. #:select : open-output-pipe close-pipe
; seed the random number generator
set! *random-state* : random-state-from-platform
define : make-diagonal-matrix-with-trace trace
let : : dim : length trace
list-ec (: i dim)
list-ec (: j dim)
if : = i j
list-ref trace i
. 0.0
define : make-covariance-matrix-from-standard-deviations stds
make-diagonal-matrix-with-trace : map (lambda (x) (expt x 2)) stds
define : mean l
. "Calculate the average value of l (numbers)."
/ : apply + l
length l
define : standard-deviation l
. "Calculate the standard deviation of list l (numbers)."
let : : l_mean : mean l
sqrt
/ : sum-ec (: i l) : expt {i - l_mean} 2
. {(length l) - 1}
define : standard-deviation-from-deviations . l
. "Calculate the standard deviation from a list of deviations (x - x_mean)."
sqrt
/ : sum-ec (: i l) : expt i 2
. {(length l) - 1}
define* : write-multiple . x
. "Helper to avoid suffering from write-newline-typing."
map : lambda (x) (write x) (newline)
. x
;; Start with the simple case: One variable and independent observations (R diagonal)
;; First define a truth
define x^true '(0.5 0.6 0.7 0.1)
;; Then generate observations
define y⁰-num 100
;; At the positions where they are measured. Drawn randomly to avoid
;; giving an undue weight to later values.
define y⁰-pos : list-ec (: i y⁰-num) : random y⁰-num
;; We need an observation operator to generate observations from true values
define : H x pos
. "Observation operator. It generates modelled observations from the input.
x are parameters to be optimized, pos is another input which is not optimized. For plain functions it could be the position of the measurement on the x-axis. We currently assume absolute knowledge about the position.
"
let*
: len : length x
ystretch y⁰-num
x-pos : list-ec (: i len) : * ystretch {{i + 0.5} / {len + 1}}
apply +
list-ec (: i len)
* : list-ref x i
expt pos 2
exp
-
/ : expt {pos - (list-ref x-pos i)} 2
. ystretch
;; We start with true observations which we will disturb later to get
;; the equivalent of measured observations
define y^true : list-ec (: i y⁰-pos) : H x^true i
;; now we disturb the observations with a fixed standard deviation. This assumes uncorrelated observations.
define y⁰-std 10
define y⁰ : list-ec (: i y^true) : + i : * y⁰-std : random:normal
;; and define the covariance matrix. This assumes uncorrelated observations.
define R : make-covariance-matrix-from-standard-deviations : list-ec (: i y⁰-num) y⁰-std
;; Alternative: define observations
;; define y⁰-mean 0.8
;; The actual observations
;; define y⁰ : list-ec (: i y⁰-num) : + y⁰-mean : * y⁰-std : random:normal
;; And add an initial guess of the parameters
define x^b '(1 1 1 1) ; initial guess
define P : make-covariance-matrix-from-standard-deviations '(0.5 0.1 0.3 0.1)
define : EnSRT H x P y R y-pos N
. "Observation function H, parameters x,
parameter-covariance P, observations y, observation covariance R
and number of ensemble members N.
Limitations: y is a single value. R and P are diagonal.
"
let step
: observations-to-process y
observation-variances : list-ec (: i (length y)) : list-ref (list-ref R i) i
observation-positions y-pos
x^b x
x-deviations
list-ec (: i N)
list-ec (: j (length x))
* : random:normal
sqrt : list-ref (list-ref P j) j ; only for diagonal P!
cond
: null? observations-to-process
list x^b x-deviations
else
; write : list x^b '± : sqrt : * {1 / {(length x-deviations) - 1}} : sum-ec (: i x-deviations) : expt i 2
; newline
let*
: y_cur : car observations-to-process
R_cur : car observation-variances
y-pos_cur : car observation-positions
Hx^b_i
list-ec (: i x-deviations)
H
list-ec (: j (length i))
+ (list-ref x^b j) (list-ref i j)
. y-pos_cur
Hx^b
/ : sum-ec (: i Hx^b_i) i
. N
Hx^b-prime
list-ec (: i N)
- : list-ref Hx^b_i i
. Hx^b
HPHt
/ : sum-ec (: i Hx^b-prime) {i * i}
. {N - 1}
PHt
list-ec (: j (length x^b)) ; for each x^b_i multiply the state-element and model-deviation for all ensemble members.
* {1 / {N - 1}}
sum-ec (: i N)
* : list-ref (list-ref x-deviations i) j ; FIXME: this currently does not use j because I only do length 1 x
list-ref Hx^b-prime i
K : list-ec (: i PHt) {i / {HPHt + R_cur}}
x^a
list-ec (: j (length x^b))
+ : list-ref x^b j
* : list-ref K j
. {y_cur - Hx^b}
α-weight-sqrt : sqrt {R_cur / {HPHt + R_cur}}
α {1 / {1 + α-weight-sqrt}}
x^a-deviations
list-ec (: i N) ; for each ensemble member
list-ec (: j (length x^b)) ; and each state variable
- : list-ref (list-ref x-deviations i) j
* α
list-ref K j
list-ref Hx^b-prime i
step
cdr observations-to-process
cdr observation-variances
cdr observation-positions
. x^a
. x^a-deviations
define : main args
let*
: optimized : EnSRT H x^b P y⁰ R y⁰-pos 300
x-opt : list-ref optimized 0
x-deviations : list-ref optimized 1
; std : sqrt : * {1 / {(length x-deviations) - 1}} : sum-ec (: i x-deviations) : expt i 2
format #t "x⁰: ~A ± ~A\nx: ~A ± ~A\nx^t:~A\ny: ~A ± \ny⁰: ~A ± ~A\nnoise: ~A\n"
. x^b
list-ec (: i (length x^b)) : list-ref (list-ref P i) i
. x-opt
list-ec (: i (length x-opt))
apply standard-deviation-from-deviations : list-ec (: j x-deviations) : list-ref j i
. x^true
* {1 / (length y⁰)} : apply + : map (lambda (x) (H x-opt x)) y⁰-pos
; apply standard-deviation-from-deviations : map H x-deviations ; FIXME: This only works for trivial H.
mean y⁰
standard-deviation y⁰
. y⁰-std
; now plot the result
let : : port : open-output-pipe "python"
format port "import pylab as pl\n"
format port "y0 = [float(i) for i in '~A'[1:-1].split(' ')]\n" y⁰
format port "ypos = [float(i) for i in '~A'[1:-1].split(' ')]\n" y⁰-pos
format port "yinit = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x^b i
format port "yopt = [float(i) for i in '~A'[1:-1].split(' ')]\n" : list-ec (: i y⁰-pos) : H x-opt i
format port "pl.plot(*zip(*sorted(zip(ypos, yinit))), label='prior model')\n"
format port "pl.plot(*zip(*sorted(zip(ypos, yopt))), label='optimized model')\n"
format port "pl.plot(*zip(*sorted(zip(ypos, y0))), label='measurements')\n"
format port "pl.legend()\n"
format port "pl.xlabel('position [arbitrary units]')\n"
format port "pl.ylabel('value [arbitrary units]')\n"
format port "pl.title('ensemble optimization results')\n"
format port "pl.show()\n"
format port "exit()\n"
close-pipe port