
Deferred Authorization translator
for the Hurd

Dr. Arne Babenhauserheide

<2021-12-29 Mi>

I realized a project to have your computer ask for authorization when processes access a
file. It is built as the translator checkperms and the simple permission granting program
queryauth.

This project is built for the Hurd, where it can be done without too much fuss — and
without kernel hacking or dbus-communication.1

The translator can delegate permission-granting to the program via two FIFO files. The
goal is to create a simple replacement for the use-case of polkit of granting privilege
to a process to access some resource after user-interaction with a permission-granting
daemon.

This is the simplest structure I could devise for the use-case: The whole system is
implemented in about 150 lines of C for the translator (building on hello-mt) and 30
lines of bash for the permission granting program.

This code is supported by a small nlnet grant to provide one component for sound in
the Hurd: practical fine-grained access-control.

The original plan in that project was to add sound itself. I retargeted it last year to
access control to avoid running into conflicts with the currently running rump-kernel
work.

Contents

1The Hurd is a collection of servers that run on the Mach microkernel to implement file systems,
network protocols, file access control, and other features that are implemented by the Unix kernel
or similar kernels (such as Linux). In short: Like Linux, but easier to hack on, with technical
advantages that allow avoiding quite a few crutches. And actually older. It allows doing cool things
like this deferred authorization translator.

1

http://hurd.gnu.org
https://nlnet.nl/project/Hurd-Audio/
http://hurd.gnu.org
https://www.draketo.de/light/english/free-software/some-technical-advantages-of-the-hurd
https://www.draketo.de/light/english/free-software/some-technical-advantages-of-the-hurd

Code

The translator and the related tools are available in the checkperm-deferred-authorization
branch in the hurd repository.

The code for the program is provided in this article

Usage Example

We restrict a the node /hello to require explicit permission for every PID that does not
have the group user. This notably does include processes started by root.

How it looks

First shell as root:

settrans -cga /hello $(realpath ~/Dev/hurd/trans/checkperms) --groupname=user
su - user --shell /bin/bash -c 'cat /hello'
⇒ HELLOWORLD # user has the group user
cat /hello # root does not have the group user, so

this blocks until positive reply in the other shell

Second shell (run the program):

Process 732 tries to access file /hello but is not in the required group user.
USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND
root 732 0.0 0.1 148M 3.55M p2 Sso Mon 1AM 0:01.10 -bash
Grant permission and add group "user" for 5 minutes? [y/N]> y

First shell as root:

⇒ HELLOWORLD
only blocks once despite getting two reads from cat,
because for the second read cat already has the group `user`.

Trying it yourself

Setup the development environment with the code at ~/Dev similar to https://www.
draketo.de/software/hurd-development-environment

Compile and setup the translator:

cd ~/Dev/hurd && \
patch -p1 < checkperms.patch && \
autoreconf -i && \
./configure --without-parted && \

2

https://git.savannah.gnu.org/cgit/hurd/hurd.git
https://www.draketo.de/software/hurd-development-environment
https://www.draketo.de/software/hurd-development-environment

make && \
touch trans/checkperms.c && \
CFLAGS="$CFLAGS -g" make && \
echo HELLOWORLD > /hello && \
settrans -cga /hello $(realpath ~/Dev/hurd/trans/checkperms) --groupname=user

Create the FIFOs:

USER=root
GROUP=user
mkdir -p /run/$USER/request-permission
mkdir -p /run/$USER/grant-permission
mkfifo /run/$USER/request-permission/$GROUP
mkfifo /run/$USER/grant-permission/$GROUP

Setup the permission-granting program in a separate shell:

USER=root
GROUP=user
while true; do

PID="$(cat /run/$USER/request-permission/$GROUP)"
echo Process $PID tries to access file /hello but is not in the required group $GROUP.
ps-hurd -p $PID -aeux
if [["$(read -e -p 'Grant permission and add group "'$GROUP'" for 5 minutes? [y/N]> '; echo $REPLY)" == [Yy]*]]; then

addauth -p $PID -g $GROUP
echo 0 > /run/$USER/grant-permission/$GROUP
(sleep 300 && rmauth -p $PID -g $GROUP 2>/dev/null) &

else
echo 1 > /run/$USER/grant-permission/$GROUP

fi
done

Access the translator as user without the required group and with the group:

su - user --shell /bin/bash -c cat /hello'
cat /hello &

queryauth

To simplify usage there are two helper tools:

• queryauth-setup FILE GROUP [PROGRAM]

• queryauth GROUP

queryauth-setup sets the checkperms translator on FILE for the current user, guarded
by GROUP, using the authorization query PROGRAM (queryauth if not given)

3

queryauth waits for requests to add the GROUP and queries the user when needed.

Concept

The translator

The translator is started with a GROUP as argument. When the file is accessed, the
translator checks whether the process has the given group. If it does, it returns data
read from the underlying file.

If the process lacks the required group, the translator retrieves its USER and PID and
writes the PID into a FIFO located at

/run/USER/request-permission/GROUP

Then it reads from

/run/USER/grant-permission/GROUP

It blocks until it gets a reply. If it reads a 0 (=success), it reads from the file and returns
the data.

The permission granting program

The permission granting program reads the PID from

/run/USER/request-permission/GROUP

retrieves information about the PID and asks the user whether to allow the program.

If the USER answers no, the RET value is non-zero.

If the USER answers yes, the RET value is zero (0) and the program adds the GROUP
to the process at PID (using addauth).

It also starts a daemon that will remove the group again after 5 minutes (modelled after
the temporary permissions to run privileged without password granted by sudo).

The program then writes the RET value into

/run/USER/grant-permission/GROUP

What if the translator crashes?

If the translator crashes, the permissions return to those of the underlying node. For
every user except root this usually means that the process does not have access to the
file.

4

The failure-mode should therefore be safe.

Current limitations

read-only

The current implementation only provides read-access, writing is prevented. This is not
an intrinsic limitation, only an implementation artefact.

delegate

The underlying file is currently read by the translator and the data returned to the
reading process. To reduce delays, it could directly delegate to the underlying file. With
the long term goal to provide multiplexing of access, for example for audio, reading via
the translator could be preferable, though.

writing via system shell

Writing to and reading from the FIFOs is currently done with system(). It would be
nicer to move to an implementation that does not rely on the system-shell.

potential race-condition

Accesses from two different translators can currently race for the reply. To fix this, the
translator should write the PID and a random LABEL into the request. The program
should repeat that label for replies to ensure that the reply and request can be matched.
If receiving a non-matching reply, it MUST be written into the grant again after a
random delay to enable a matching translator to retrieve the grant.
REQUEST: PID LABEL
GRANT: RET LABEL (RET=0 is success)
LABEL=$RANDOM

multiple permission-granting programs

The system assumes having a single permission granting program per user. For a setup
with multiple unconnected sessions per user (like several TTYs) the permission granting
program needs to coordinate between these.

This can be as easy as adding a timeout to the question to the user and writing what
you read back into the request if you time out.

5

Possibilities

The most important use-case for this translator is to make it easier to start programs
with reduced permissions and only add these when required.

To setup deferred permissions for a single file, you can create a group just for that
file. Then each file can have its own permission granting program. Having dedicated
groups decouples authentication and authorization while staying in the conventional *nix
permissions scheme.

You can also set this translator on a file that gets accessed first when a process accesses
a set of related files that all have the same group. Since the authorization-program here
adds the group for 5 minutes, the other files can afterwards be accessed, too.

Since the translator simply defers to a program, that program could do any action to
get authorization, including curl. Administrators for a local network could therefore set
up terminals for unprivileged users that request permissions from a local server when
accessing a file. That way permissions can easily be coordinated over multiple machines.
(naturally this does not restrict root who can always use settrans -g to get raw access to
the file)

Personal note

There’s a magic in being asked on the second shell whether cat on the first shell should
be allowed to access a file for 5 minutes — and all that in 150 lines of C and 30 lines of
shell.

The Hurd is pretty cool!

(though I have to admit that getting the translator to actually work took ages)

6

