
<2012-08-15 Mi> Dr. Arne Babenhauserheide / draketo.de

A complete Mercurial branching
strategy

3 simple rules: default, stable, feature-branches

This is a complete collaboration model for Mercurial. It boils down to 3 simple
rules and shows you all the actions you may need to take, except for the basics
already found in other tutorials like

• Mercurial in workflows (official guide, 15 minutes)

• hg init science (slides 12 to 23)

Adaptions optimize the model for special needs like maintaining multiple releases, grafting
micro-releases and an explicit code review stage.

Contents

1 3 simple rules 2
1.1 Diagram . 3

2 Practial Actions 3

3 Example 5

4 Action by action 7
4.1 Initialize . 7
4.2 Stable branch and first release . 7
4.3 Further development . 8
4.4 Hotfix . 8
4.5 Regular release . 9
4.6 Feature branches . 10

5 Adaptions 12
5.1 Multiple maintained releases . 13
5.2 Graft changes into micro-releases . 15
5.3 Explicit review branch . 18

6 Frequently Asked Questions (FAQ) 19
6.1 Where does QA (Quality Assurance) come in? 19

1

https://www.draketo.de
http://mercurial-scm.org
http://mercurial-scm.org/guide
https://bitbucket-archive.softwareheritage.org/new-static/77/773eb448-920e-4891-a3e1-7c0cac63d698/attachments/hg-init-science-0.2.5.pdf

7 Summary 19

8 Appendix: Diagrams 20
8.1 Base workflow . 21
8.2 Maintain several releases side-by-side . 22
8.3 Graft releases . 23
8.4 Use a review branch . 24

1 3 simple rules

Any model to be used by people should consist of simple, consistent rules. Programming is
complex enough without having to worry about elaborate branching directives. Therefore
this model boils down to 3 simple rules:

1. you do all the work on default1 - except for hotfixes.

2. on stable you only do hotfixes, merges for release2 and tagging for release.
Only maintainers3 touch stable.

3. you can use arbitrary feature-branches4, as long as you don’t call them default
or stable. They always start at default (since you do all the work on default).

1default is the default branch. That’s the named branch you use when you don’t explicitely set a
branch. Its alias is the empty string, so if no branch is shown in the log (hg log), you’re on the
default branch. Thanks to John for asking!

2If you want to release the changes from default in smaller chunks, you can also graft specific changes
into a release preparation branch and merge that instead of directly merging default into stable.
This can be useful to get real-life testing of the distinct parts. For details see the extension Graft
changes into micro-releases.

3Maintainers are those who do releases, while they do a release. At any other time, they follow the
same patterns as everyone else. If the release tasks seem a bit long, keep in mind that you only need
them when you do the release. Their goal is to make regular development as easy as possible, so
you can tell your non-releasing colleagues "just work on default and everything will be fine".

4This model does not use bookmarks, because they don’t offer benefits which outweight the cost of
introducing another concept: If you use bookmarks for differenciating lines of development, you
have to define the canonical revision to clone by setting the @ bookmark. For local work and small
features, bookmarks can be used quite well, though, and since this model does not define their use,
it also does not limit it.
Additionally bookmarks could be useful for feature branches, if you use many of them (in that case
reusing names is a real danger and not just a rare annoyance) or if you use release branches:
"What are people working on right now?" → hg bookmarks
"Which lines of development do we have in the project?" → hg branches

2

1.1 Diagram

To visualize the structure, here’s a 3-tiered diagram. To the left are the actions of pro-
grammers (commits and feature branches) and in the center the tasks for maintainers
(release and hotfix). The users to the right just use the stable branch.5

2 Practial Actions

Now we can look at all the actions you will ever need to do in this model:6

• Regular development

– commit changes: (edit); hg ci -m "message"

– continue development after a release: hg update; (edit); hg ci -m "message"

• Feature Branches

5Those users who want external verification can restrict themselves to the tagged releases - potentially
GPG signed by trusted 3rd-party reviewers. GPG signatures are treated like hotfixes: reviewers sign
on stable (via hg sign without options) and merge into default. Signing directly on stable reduces
the possibility of signing the wrong revision.

6hg pull and hg push to transfer changes and hg merge when you have multiple heads on one branch
are implied in the actions: you can use any kind of repository structure and synchronization scheme.
The practical actions only assume that you synchronize your repositories with the other contributors
at some point.

3

http://mercurial.selenic.com/wiki/GpgExtension

– start a larger feature: hg branch feature-x; (edit); hg ci -m "message"

– continue with the feature: hg update feature-x; (edit); hg ci -m "message"

– merge the feature: hg update default; hg merge feature-x; hg ci -m
"merged feature x into default"

– close and merge the feature when you are done: hg update feature-x; hg
ci --close-branch -m "finished feature x"; hg update default; hg
merge feature-x; hg ci -m "merged finished feature x into default"

• Tasks for Maintainers

– Initialize (only needed once)

∗ create the repo: hg init reponame; cd reponame

∗ first commit: (edit); hg ci -m "message"

∗ create the stable branch and do the first release: hg branch stable; hg
tag tagname; hg up default; hg merge stable; hg ci -m "merge stable
into default: ready for more development"

– apply a hotfix7: hg up stable; (edit); hg ci -m "message"; hg up
default; hg merge stable; hg ci -m "merge stable into default: ready
for more development"

– do a release8: hg up stable; hg merge default; hg ci -m "(description
of the main changes since the last release)" ; hg tag tagname; hg
up default ; hg merge stable ; hg ci -m "merged stable into default:
ready for more development"

That’s it. All that follows are a detailed example which goes through all actions one-by-one,
adaptions to this workflow and the final summary.

7Here a hotfix is defined as a fix which must be applied quickly out-of-order, for example to fix a
security hole. It prompts a bugfix-release which only contains already stable and tested changes plus
the hotfix.

8If your project needs a certain release preparation phase (like translations), then you can sim-
ply assign a task branch. Instead of merging to stable, you merge to the task branch, and once
the task is done, you merge the task branch to stable. An Example: Assume that you need to
update translations before you release anything. (next part: init: you only need this once) When
you want to do the first release which needs to be translated, you update to the revision from
which you want to make the release and create the "translation" branch: hg update default;
hg branch translation; hg commit -m "prepared the translation branch". All translators
now update to the translation branch and do the translations. Then you merge it into sta-
ble: hg update stable; hg merge translation; hg ci -m "merged translated source for
release". After the release you merge stable back into default as usual. (regular releases) If you
want to start translating the next time, you just merge the revision to release into the translation
branch: hg update translation; hg merge default; hg commit -m "prepared translation
branch". Afterwards you merge "translation" into stable and proceed as usual.

4

3 Example

This is the output of a complete example run 9 of the branching model, including all
complications you should ever hit.

We start with the full history. In the following sections, we will take it apart to see what
the commands do. So just take a glance, take in the basic structure and then move on
for the details.

hg log -G
@ changeset: 15:855a230f416f
|\ tag: tip
| | parent: 13:e7f11bbc756c
| | parent: 14:79b616e34057
| | summary: merged stable into default: ready for more development
| |
| o changeset: 14:79b616e34057
|/| branch: stable
| | parent: 7:e8b509ebeaa9
| | parent: 13:e7f11bbc756c
| | summary: merged default into stable for release
| |
o | changeset: 13:e7f11bbc756c
|\ \ parent: 11:e77a94df3bfe
| | | parent: 12:aefc8b3a1df2
| | | summary: merged finished feature x into default
| | |
| o | changeset: 12:aefc8b3a1df2
| | | branch: feature-x
| | | parent: 9:1dd6209b2a71
| | | summary: finished feature x

9The output is complete except for user and date, because those were unnecessarily repet-
itive. To run the example and check the output yourself, just copy-paste the following
your shell: HGPLAIN=1 LC_ALL=C sh -c ’hg init test-branch; cd test-branch; echo 1 >
1; hg ci -Am 1; hg branch stable; hg tag v1 ; hg up default; hg merge stable; hg
ci -m "merged stable into default: ready for more development"; echo 2 > 2; hg
ci -Am 2; hg up stable; echo 1.1 > 1; hg ci -Am hotfix; hg up default; hg merge
stable; hg ci -m "merge stable into default: ready for more development"; hg up
stable; hg merge default; hg ci -m "merge default into stable for release" ; hg
tag v2; hg up default ; hg merge stable ; hg ci -m "merged stable into default:
ready for more development" ; hg branch feature-x; echo x > x ; hg ci -Am x; hg
up default; echo 3 > 3; hg ci -Am 3; hg merge feature-x; hg ci -m "merged feature
x into default"; hg update feature-x; hg ci --close-branch -m "finished feature
x"; hg update default; hg merge feature-x; hg ci -m "merged finished feature x
into default"; hg up stable ; hg merge default; hg ci -m "merged default into
stable for release"; hg up default; hg merge stable ; hg ci -m "merged stable into
default: ready for more development"; hg log -G’

5

| | |
o | | changeset: 11:e77a94df3bfe
|\| | parent: 10:8c423bc00eb6
| | | parent: 9:1dd6209b2a71
| | | summary: merged feature x into default
| | |
o | | changeset: 10:8c423bc00eb6
| | | parent: 8:dc61c2731eda
| | | summary: 3
| | |
| o | changeset: 9:1dd6209b2a71
|/ / branch: feature-x
| | summary: x
| |
o | changeset: 8:dc61c2731eda
|\| parent: 5:4c57fdadfa26
| | parent: 7:e8b509ebeaa9
| | summary: merged stable into default: ready for more development
| |
| o changeset: 7:e8b509ebeaa9
| | branch: stable
| | summary: Added tag v2 for changeset 089fb0af2801
| |
| o changeset: 6:089fb0af2801
|/| branch: stable
| | tag: v2
| | parent: 4:d987ce9fc7c6
| | parent: 5:4c57fdadfa26
| | summary: merge default into stable for release
| |
o | changeset: 5:4c57fdadfa26
|\| parent: 3:bc625b0bf090
| | parent: 4:d987ce9fc7c6
| | summary: merge stable into default: ready for more development
| |
| o changeset: 4:d987ce9fc7c6
| | branch: stable
| | parent: 1:a8b7e0472c5b
| | summary: hotfix
| |
o | changeset: 3:bc625b0bf090
| | summary: 2
| |
o | changeset: 2:3e8df435bcb0

6

|\| parent: 0:f97ea6e468a1
| | parent: 1:a8b7e0472c5b
| | summary: merged stable into default: ready for more development
| |
| o changeset: 1:a8b7e0472c5b
|/ branch: stable
| summary: Added tag v1 for changeset f97ea6e468a1
|
o changeset: 0:f97ea6e468a1

tag: v1
summary: 1

4 Action by action

Let’s take the log apart to show the actions contributors will do.

4.1 Initialize

Initializing and doing the first commit creates the first changeset:

o changeset: 0:f97ea6e468a1
tag: v1
summary: 1

Nothing much to see here.

Commands:

hg init test-branch; cd test-branch
(edit); hg ci -m "message"

4.2 Stable branch and first release

We add the first tagging commit on the stable branch as release and merge back into
default:

o changeset: 2:3e8df435bcb0
|\ parent: 0:f97ea6e468a1
| | parent: 1:a8b7e0472c5b
| | summary: merged stable into default: ready for more development
| |
| o changeset: 1:a8b7e0472c5b
|/ branch: stable
| summary: Added tag v1 for changeset f97ea6e468a1

7

|
o changeset: 0:f97ea6e468a1

tag: v1
summary: 1

Mind the tag field which is now shown in changeset 0 and the branchname for changeset
1. This is the only release which will ever be on the default branch (because the stable
branch only starts to exist after the first commit on it: The commit which adds the tag).

Commands:

hg branch stable
hg tag tagname
hg up default
hg merge stable
hg ci -m "merged stable into default: ready for more development"`

4.3 Further development

Now we just chuck along. The one commit shown here could be an arbitrary number of
commits.

o changeset: 3:bc625b0bf090
| summary: 2
|
o changeset: 2:3e8df435bcb0
|\ parent: 0:f97ea6e468a1
| | parent: 1:a8b7e0472c5b
| | summary: merged stable into default: ready for more development

Commands:

(edit)
hg ci -m "message"

4.4 Hotfix

If a hotfix has to be applied to the release out of order, we just update to the stable branch,
apply the hotfix and then merge the stable branch into default10. This gives us changesets
4 for the hotfix and 5 for the merge (2 and 3 are shown as reference).

10We merge the hotfix into default to define the relevance of the fix for general development. If the
hotfix also affects the current line of development, we keep its changes in the merge. If the current
line of development does not need the hotfix, we discard its changes in the merge. We do this to
ensure that it is clear in future how to treat the hotfix when merging new changes: let the merge
record the decision.

8

o changeset: 5:4c57fdadfa26
|\ parent: 3:bc625b0bf090
| | parent: 4:d987ce9fc7c6
| | summary: merge stable into default: ready for more development
| |
| o changeset: 4:d987ce9fc7c6
| | branch: stable
| | parent: 1:a8b7e0472c5b
| | summary: hotfix
| |
o | changeset: 3:bc625b0bf090
| | summary: 2
| |
o | changeset: 2:3e8df435bcb0
|\| parent: 0:f97ea6e468a1
| | parent: 1:a8b7e0472c5b
| | summary: merged stable into default: ready for more development

Commands:

hg up stable
(edit)
hg ci -m "message"
hg up default
hg merge stable
hg ci -m "merge stable into default: ready for more development"

4.5 Regular release

To do a regular release, we just merge the default branch into the stable branch and tag
the merge. Then we merge stable back into default. This gives us changesets 6 to 811.
The commit-message you use for the merge to stable will become the description for your
tag, so you should choose a good description instead of "merge default into stable for
release". Userfriendly, simplified release notes would be a good choice.

o changeset: 8:dc61c2731eda
|\ parent: 5:4c57fdadfa26
| | parent: 7:e8b509ebeaa9
| | summary: merged stable into default: ready for more development
| |
| o changeset: 7:e8b509ebeaa9

11We can also merge to stable regularly as soon as some set of changes is considered stable, but without
making an actual release (==tagging). That way we always have a stable branch which people can
test without having to create releases right away. The releases are those changesets on the stable
branch which carry a tag.

9

| | branch: stable
| | summary: Added tag v2 for changeset 089fb0af2801
| |
| o changeset: 6:089fb0af2801
|/| branch: stable
| | tag: v2
| | parent: 4:d987ce9fc7c6
| | parent: 5:4c57fdadfa26
| | summary: merge default into stable for release
| |
o | changeset: 5:4c57fdadfa26
|\| parent: 3:bc625b0bf090
| | parent: 4:d987ce9fc7c6
| | summary: merge stable into default: ready for more development

Commands:

hg up stable
hg merge default
hg ci -m "merge default into stable for release"
hg tag tagname
hg up default
hg merge stable
hg ci -m "merged stable into default: ready for more development"

4.6 Feature branches

Now we want to do some larger development, so we use a feature branch. The one
feature-commit shown here (x) could be an arbitrary number of commits, and as long as
you stay in your branch, the development of your colleagues will not disturb your own
work. Once the feature is finished, we merge it into default. The feature branch gives us
changesets 9 to 13 (with 10 being an example for an unrelated intermediate commit on
default).

o changeset: 13:e7f11bbc756c
|\ parent: 11:e77a94df3bfe
| | parent: 12:aefc8b3a1df2
| | summary: merged finished feature x into default
| |
| o changeset: 12:aefc8b3a1df2
| | branch: feature-x
| | parent: 9:1dd6209b2a71
| | summary: finished feature x
| |
o | changeset: 11:e77a94df3bfe

10

|\| parent: 10:8c423bc00eb6
| | parent: 9:1dd6209b2a71
| | summary: merged feature x into default
| |
o | changeset: 10:8c423bc00eb6
| | parent: 8:dc61c2731eda
| | summary: 3
| |
| o changeset: 9:1dd6209b2a71
|/ branch: feature-x
| summary: x
|
o changeset: 8:dc61c2731eda
|\ parent: 5:4c57fdadfa26
| | parent: 7:e8b509ebeaa9
| | summary: merged stable into default: ready for more development

Commands:

• Start the feature

hg branch feature-x
(edit)
hg ci -m "message"

• Do an intermediate commit on default

hg update default
(edit)
hg ci -m "message"

• Continue working on the feature

hg update feature-x
(edit)
hg ci -m "message"

• Merge the feature

hg update default
hg merge feature-x
hg ci -m "merged feature x into default"`

• Close and merge a finished feature

hg update feature-x
hg ci --close-branch -m "finished feature x"
hg update default; hg merge feature-x
hg ci -m "merged finished feature x into default"

11

Note: Closing the feature branch hides that branch in the output of hg branches (except
when using --closed) to make the repository state lean and simple while still keeping
the feature branch information in history. It shows your collegues, that they no longer
have to keep the feature in mind as soon as they merge the most recent changes from the
default branch into their own feature branches.

Note: To make the final merge of your feature into default easier, you can regularly
merge the default branch into the feature branch.

Note: We use feature branches to ensure that new clones start at a revision which other
developers can directly use. With bookmarks you could get trapped on a feature-head
which might not be merged to default for quite some time. For more reasons, see the
bookmarks footnote4.

The final action is to have a maintainer do a regular merge of default into stable to
reach a state from which we could safely do a release. Since we already showed how to
do that, we are finished here.

5 Adaptions

This realizes the successful Git branching model12 with Mercurial while maintaining one
release at any given time.

12If you look at the Git branching model which inspired this Mercurial branching model, you’ll note
that its diagram is a lot more complex than the diagram of this Mercurial version.
The reason for that is the more expressive history model of Mercurial. In short: The git version

has 5 types of branches: feature, develop, release, hotfix and master (for tagging). With Mercurial
you can reduce them to 3: default, stable and feature branches:

• Tags are simple in-history objets, so we need no special branch for them: a tag signifies
a release (down to 4 branch-types - and no more duplication of information, since in the
git-model a release is shown by a tag and a merge to master).

• Hotfixes are simple commits on stable followed by a merge to default, so we also need no
branch for them (down to 3 branch-types). And if we only maintain one release at a time, we
only need one branch for them: stable (down from branch-type to single branch).

• And feature branches are not required for clean separation since mercurial can easily cope
with multiple heads in a branch, so developers only have to worry about them if they want
to use them (down to 2 mandatory branches).

• And since the default branch is the branch to which you update automatically when you clone
a repository, new developers don’t have to worry about branches at all.

So we get down from 5 mandatory branches (2 of them are categories containing multiple branches)
to 2 simple branches without losing functionality.
And new developers only need to know two things about our branching model to contribute:

"If you use feature branches, don’t call them default or stable. And don’t touch
stable".

12

http://nvie.com/posts/a-successful-git-branching-model/
http://mercurial.selenic.com
http://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/files/Git-branching-model.pdf
https://www.draketo.de/files/hgbranchingoverview_2.png

If you have special needs, this model can easily be extended to fullfill your requirements.
Useful extensions include:

• multiple releases - if you need to provide maintenance for multiple releases side-by-
side.

• grafted micro-releases - if you need to segment the next big changes into smaller
releases while leaving out some potentially risky changes.

• explicit review - if you want to ensure that only reviewed changes can get into a
release, while making it possible to leave out some already reviewed changes from
the next releases. Review gets decoupled from releasing.

All these extensions are orthogonal, so you can use them together without getting
side-effects.

5.1 Multiple maintained releases

To use the branching model with multiple simultaneously maintained releases,13 you
only need to change the hotfix procedure: When applying a hotfix, you go back to the
old release with hg update tagname, fix there, add a new tag for the fixed release and
then update to the next release. There you merge the new fix-release and do the same
for all other releases. If the most recent release is not the head of the stable branch, you

13If you want to adapt the model to multiple very distinct releases, simply add multiple release-branches
(i.e. release-x). Then hg graft the changes you want to use from default or stable into the releases and
merge the releases into stable to ensure that the relationship of their changes to current changes is
clear, recorded and will be applied automatically by Mercurial in future merges.14If you use multiple
tagged releases, you need to merge the releases into each other in order - starting from the oldest
and finishing by merging the most recent one into stable - to record the same information as with
release branches. Additionally it is considered impolite to other developers to keep multiple heads
in one branch, because with multiple heads other developers do not know the canonical tip of the
branch which they should use to make their changes - or in case of stable, which head they should
merge to for preparing the next release. That’s why you are likely better off creating a branch per
release, if you want to maintain many very different releases for a long time. If you only use tags
on stable for releases, you need one merge per maintained release to create a bugfix version of one
old release. By adding release branches, you reduce that overhead to one single merge to stable
per affected release by stating clearly, that changes to old versions should never affect new versions,
except if those changes are explicitely merged into the new versions. If the bugfix affects all releases,
release branches require two times as many actions as tagged releases, though: You need to graft
the bugfix into every release and merge the release into stable.15

14If for example you want to ignore that change to an old release for new releases, you simply merge
the old release into stable and use hg revert --all -r stable before committing the merge.

15A rule of thumb for deciding between tagged releases and release branches is: If you only have a few
releases you maintain at the same time, use tagged releases. If you expect that most bugfixes will
apply to all releases, starting with some old release, just use tagged releases. If bugfixes will only
apply to one release and the current development, use tagged releases and merge hotfixes only to
stable. If most bugfixes will only apply to one release and not to the current development, use release
branches.

13

also merge into stable. Then you merge the stable branch into default, as for a normal
hotfix.16

With this merge-chain you don’t need special branches for releases, but all changesets
are still clearly recorded. This simplification over git is a direct result of having real
anonymous branching in Mercurial.

hg update release-1.0
(edit)
hg ci -m "message"
hg tag release-1.1
hg update release-2.0
hg merge release-1.1
hg ci -m "merged changes from release 1.1"
hg tag release-2.1
... and so on

In the Diagram this just adds a merge path from the hotfix to the still maintained
releases. Note that nothing changed in the workflow of programmers.

16Merging old releases into new ones sounds like a lot of work. If you get that feeling, then have a
look how many releases you really maintain right now. In my Gentoo tree most programs actually
have only one single release, so using actual release branches would incur an additional burden
without adding real value. You can also look at the rule of thumb whether to choose feature branches
instead.15

14

An overview of the branching strategy with maintained releases.

5.2 Graft changes into micro-releases

If you need to test parts of the current development in small chunks, you can graft micro
releases. In that case, just update to stable and merge the first revision from default,
whose child you do not want, and graft later changes17.

17If you want to make sure that every changeset on stable is production-ready, you can also start
a new release-branch on stable, then merge the first revision, whose child you do not want, into
that branch and graft additional changes. Then close the branch and merge it into stable. You can
achieve the same with much lower overhead (unneeded complexity) by changing the requirement to
"every tagged revision on stable is production-ready". To only see tagged revisions on stable, just
use hg log -r "branch(stable) and tag()". This also works for incoming and outgoing, so you
can use it for triggering a build system.

15

Example for the first time you use micro-releases18:

You have changes 1, 2, 3, 4 and 5 on default. First you want to create a
release which contains 1 and 4, but not 2, 3 or 5.

hg update 1 hg branch stable hg graft 4

As usual tag the release and merge stable back into default:

hg tag rel-14 hg update default hg merge stable hg commit -m "merge stable
into default. ready for more development"

Example for the second and subsequent releases:

Now you want to release the change 2 and 5, but you’re still not ready to
release 3. So you merge 2 and graft 5.

hg update stable hg merge 2 hg commit -m "merge all changes until 2 from
default" hg graft 5

As usual tag the release and finally merge stable back into default:

hg tag rel-1245 hg update default hg merge stable hg commit -m "merge
stable into default. ready for more development"

The history now looks like this19:

@ merge stable into default. ready for more development (default)
|\
| o Added tag rel-1245 for changeset 4e889731c6ca (stable)
| |
| o 5 (stable)
| |
| o merge all changes until 2 from default (stable)
| |\
o---+ merge stable into default. ready for more development (default)
| | |
| | o Added tag rel-14 for changeset cc2c95dd3f27 (stable)
| | |
| | o 4 (stable)
| | |
o | | 5 (default)
| | |
o | | 4 (default)
| | |

18To test this workflow yourself, just create the test repository with hg init 12345; cd 12345; for
i in {0..5}; do echo $i > $i; hg ci -Am $i; done.

19The short graphlog for the grafted micro-releases was created via hg glog --template "{desc}
({branch})".

16

o | | 3 (default)
|/ /
o / 2 (default)
|/
o 1 (default)
|
o 0 (default)

In the Diagram this just adds graft commits to stable:

An overview of the branching strategy with grafted micro-releases.

Grafted micro-releases add another layer between development and releases. They can
be necessary in cases where testing requires actually deploying a release, as for example
in Freenet.

17

http://freenetproject.org

5.3 Explicit review branch

If you want to add a separate review stage, you can use a review branch20, 21 into which
you only merge or graft reviewed changes. The review branch then acts as a staging
area for all changes which might go into a release.

To use this extension of the branching model, just create a branch on default called
review in which you merge or graft reviewed changes. The first time you do that, you
update to the first commit whose children you do not want to include. Then create the
review branch with hg branch review and use hg graft REV to pull in all changes you
want to include.

On subsequent reviews, you just update to review with hg update nextrelease, merge the
first revision which has a child you do not want with hg merge REV and graft additional
later changes with hg graft REV as you would do it for micro-releases..

In both cases you create the release by merging the review branch into stable.

A special condition when using a review branch is that you always have to merge hotfixes
into the review branch, too, because the review branch does not automatically contain
all changes from the default branch.

In the Diagram this just adds the review branch between default and stable instead
of the release merge. Also it adds the hotfix merge to the review branch.

20The review branch is a special preparation-branch,8 because it can get discontinous changes, if
maintainers decide to graft some changes which have ancestors they did not review yet.

21We use one single review branch which gets reused at every review to ensure that there are no changes
in stable which we did not have in the review. As alternative, you could use one branch per review.
In that case, ensure that you start the review-* branches from stable and not from default. Then
merge and graft the changes from default which you want to review for inclusion in your next release.

18

An overview of the branching strategy with a review branch.

6 Frequently Asked Questions (FAQ)

6.1 Where does QA (Quality Assurance) come in?

In the default flow when the users directly use the stable branch you do QA on the
default branch before merging to stable. QA is a part of the maintainers job, there.

If your users want external QA,5 that QA is done for revisions on the stable branch. It is
restricted to signing good revisions. Any changes have to be done on the default branch
- except for hotfixes for previously signed releases. It is only a hotfix, if your users could
already be running a broken version.

There is also an extension with an explicit review branch. There QA is done on the
review branch.

7 Summary

This realizes the successful Git branching model with Mercurial.

19

http://nvie.com/posts/a-successful-git-branching-model/
http://mercurial.selenic.com

We now have nice graphs, examples, potential extensions and so on. But since this
strategy uses Mercurial instead of git, we don’t actually need all the graphics, descriptions
and branch categories in the git version - or in this post.

Instead we can boil all of this down to 3 simple rules:

1. you do all the work on default - except for hotfixes.

1. on stable you only do hotfixes, merges for release and tagging for
release. Only maintainers touch stable.

1. you can use arbitrary feature-branches, as long as you don’t call them
default or stable. They always start at default (since you do all the
work on default).

They are the rules you already know from the starting summary. Keep them in mind
and you’re good to go. And when you’re doing regular development, there is only one
rule to remember:

You do all the work on default.

That’s it. Happy hacking!

8 Appendix: Diagrams

Diagrams for the hg branching strategy

20

8.1 Base workflow

| |
programmers | maintainers maintainers | users

| |
+----+----+ +---+----+

/--------------\ | | | |
|regular commit+----=---+ default | | stable |
\--------------/ | | | |

| | | |
/--------------\ | | | |
|regular commit+----=---+ | | |
\--------------/ | | | |

| +-------release merge--->| |
... | | | |

	/-----------\	
	<-merge-+release tag+-=-+	
	\-----------/	cBLU

+----------------+ | | | |
	<--+			
feature branch		cGRE		
{d}		{d}		{d}
+----+------+----+ | | /-----------\ | |

: | | |<-merge-+hotfix cRED+-=-+ |
			\-----------/	
+-merge->				
+---------+ +--------+				

/-------+------\
|regular commit| +--------------------+
\--------------/ | Glossary |

| |
... | --- branch change |

| -=- stay on branch |
+--------------------+

21

8.2 Maintain several releases side-by-side
| |

programmers | maintainers maintainers | users
| |

+----+----+ +---+----+
/--------------\ | | | |
|regular commit+----=----+ default | | stable |
\--------------/ | | | |

| | | |
/--------------\ | | | |
|regular commit+----=----+ | | |
\--------------/ | | | |

| +------------release merge------>| |
... | | | |

	/-----------\		
	<-merge------+release tag+-=----		
	\-----------/		
	/----------------------\		
		maintained release 1.x+-=--	
	\-----------+----------/	cBLU	

+----------------+ | | | | |
	<---+	:		
feature branch		cGRE	v	
{d}		{d}	/-----------\	{d}
+----+------+----+ | | |hotfix cRED| | |

: | | | \-------+---/ | |
			:			
			v			
			/-------------------\			
				release tag 1.(x+1)		
			\----------+--------/			
			merge			
			:			
			v			
			/----------------------\			
				maintained release 2.y		
			\-----------+----------/	cBLU		
			:			
			v			
			/-------------------\			
				release tag 2.(y+1)+-=-merge->		
			\-------------------/			
			...			
+-merge-->		<--------merge hotfix-----------+				
+---------+ +--------+						

/-------+------\
|regular commit| +--------------------+
\--------------/ | Glossary |

| |
... | --- branch change |

| -=- stay on branch |
+--------------------+

22

8.3 Graft releases

| |
programmers | maintainers maintainers | users

| |
+----+----+ +---+----+

/--------------\ | | | |
|regular commit+----=---+ default | | stable |
\--------------/ | +------->release merge-->| |

| | | |
/--------------\ | | | |
|regular commit+----=---+ | /---+---\ | |
\--------------/ | +------->+ graft |------>| |
... | | \-------/ | |

	...	
	/-----------\	
	<-merge-+release tag+-=-+	
	\-----------/	cBLU

+----------------+ | | | |
	<--+			
feature branch		cGRE		
{d}		{d}		{d}
+----+------+----+ | | /-----------\ | |

: | | |<-merge-+hotfix cRED+-=-+ |
			\-----------/	
+-merge->				
+---------+ +--------+				

/-------+------\
|regular commit| +--------------------+
\--------------/ | Glossary |

| |
... | --- branch change |

| -=- stay on branch |
+--------------------+

23

8.4 Use a review branch

| |
programmers | maintainers maintainers | users

| |
+----+----+ +---+----+

/--------------\ | | | |
|regular commit+----=---+ default | +----------------+ | stable |
\--------------/ | | | | | |

| +-->+ review | | |
/--------------\ | | | c1AB {d} | | |
|regular commit+----=---+ | +---+---------+--+ | |
\--------------/ | | | ^ | | |
... | | : | | | |

	/---+---\				
+-->+ graft					
	\-------/				
	...				
	+-------+ v				
		release-->			
		/-----------\			
	<-merge-+hotfix cRED+-=-+				
	\-----------/				

+----------------+ | | | |
	<--+			
feature branch		cGRE		
{d}		{d}	/-----------\	
+----+------+----+ | |<-merge-+release tag+-=-+ |

: | | | \-----------/ | cBLU |
				{d}
+-merge->				
+---------+ +--------+				

/-------+------\
|regular commit| +--------------------+
\--------------/ | Glossary |

| |
... | --- branch change |

| -=- stay on branch |
+--------------------+

24

	3 simple rules
	Diagram

	Practial Actions
	Example
	Action by action
	Initialize
	Stable branch and first release
	Further development
	Hotfix
	Regular release
	Feature branches

	Adaptions
	Multiple maintained releases
	Graft changes into micro-releases
	Explicit review branch

	Frequently Asked Questions (FAQ)
	Where does QA (Quality Assurance) come in?

	Summary
	Appendix: Diagrams
	Base workflow
	Maintain several releases side-by-side
	Graft releases
	Use a review branch

